import math import torch from torch import nn from einops import rearrange, repeat from backend.attention import attention_function from diffusers.configuration_utils import ConfigMixin, register_to_config def checkpoint(f, args, parameters, enable=False): if enable: raise NotImplementedError('Gradient Checkpointing is not implemented.') return f(*args) def exists(val): return val is not None def default(val, d): if exists(val): return val return d def conv_nd(dims, *args, **kwargs): if dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) else: raise ValueError(f"unsupported dimensions: {dims}") def avg_pool_nd(dims, *args, **kwargs): if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def apply_control(h, control, name): if control is not None and name in control and len(control[name]) > 0: ctrl = control[name].pop() if ctrl is not None: try: h += ctrl except: print("warning control could not be applied", h.shape, ctrl.shape) return h def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): # Consistent with Kohya to reduce differences between model training and inference. # Will be 0.005% slower than ComfyUI but Forge outweigh image quality than speed. if not repeat_only: half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) else: embedding = repeat(timesteps, 'b -> b d', d=dim) return embedding class TimestepBlock(nn.Module): pass class TimestepEmbedSequential(nn.Sequential, TimestepBlock): def forward(self, x, emb, context=None, transformer_options={}, output_shape=None): block_inner_modifiers = transformer_options.get("block_inner_modifiers", []) for layer_index, layer in enumerate(self): for modifier in block_inner_modifiers: x = modifier(x, 'before', layer, layer_index, self, transformer_options) if isinstance(layer, TimestepBlock): x = layer(x, emb, transformer_options) elif isinstance(layer, SpatialTransformer): x = layer(x, context, transformer_options) if "transformer_index" in transformer_options: transformer_options["transformer_index"] += 1 elif isinstance(layer, Upsample): x = layer(x, output_shape=output_shape) else: x = layer(x) for modifier in block_inner_modifiers: x = modifier(x, 'after', layer, layer_index, self, transformer_options) return x class Timestep(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, t): return timestep_embedding(t, self.dim) class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * torch.nn.functional.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) def forward(self, x, context=None, value=None, mask=None, transformer_options={}): q = self.to_q(x) context = default(context, x) k = self.to_k(context) if value is not None: v = self.to_v(value) del value else: v = self.to_v(context) out = attention_function(q, k, v, self.heads, mask) return self.to_out(out) class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None, disable_self_attn=False): super().__init__() self.ff_in = ff_in or inner_dim is not None if inner_dim is None: inner_dim = dim self.is_res = inner_dim == dim if self.ff_in: self.norm_in = nn.LayerNorm(dim) self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff) self.disable_self_attn = disable_self_attn self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None) self.norm1 = nn.LayerNorm(inner_dim) self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) self.norm2 = nn.LayerNorm(inner_dim) self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff) self.norm3 = nn.LayerNorm(inner_dim) self.checkpoint = checkpoint self.n_heads = n_heads self.d_head = d_head def forward(self, x, context=None, transformer_options={}): return checkpoint(self._forward, (x, context, transformer_options), None, self.checkpoint) def _forward(self, x, context=None, transformer_options={}): # Stolen from ComfyUI with some modifications extra_options = {} block = transformer_options.get("block", None) block_index = transformer_options.get("block_index", 0) transformer_patches = {} transformer_patches_replace = {} for k in transformer_options: if k == "patches": transformer_patches = transformer_options[k] elif k == "patches_replace": transformer_patches_replace = transformer_options[k] else: extra_options[k] = transformer_options[k] extra_options["n_heads"] = self.n_heads extra_options["dim_head"] = self.d_head if self.ff_in: x_skip = x x = self.ff_in(self.norm_in(x)) if self.is_res: x += x_skip n = self.norm1(x) if self.disable_self_attn: context_attn1 = context else: context_attn1 = None value_attn1 = None if "attn1_patch" in transformer_patches: patch = transformer_patches["attn1_patch"] if context_attn1 is None: context_attn1 = n value_attn1 = context_attn1 for p in patch: n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) if block is not None: transformer_block = (block[0], block[1], block_index) else: transformer_block = None attn1_replace_patch = transformer_patches_replace.get("attn1", {}) block_attn1 = transformer_block if block_attn1 not in attn1_replace_patch: block_attn1 = block if block_attn1 in attn1_replace_patch: if context_attn1 is None: context_attn1 = n value_attn1 = n n = self.attn1.to_q(n) context_attn1 = self.attn1.to_k(context_attn1) value_attn1 = self.attn1.to_v(value_attn1) n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) n = self.attn1.to_out(n) else: n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=extra_options) if "attn1_output_patch" in transformer_patches: patch = transformer_patches["attn1_output_patch"] for p in patch: n = p(n, extra_options) x += n if "middle_patch" in transformer_patches: patch = transformer_patches["middle_patch"] for p in patch: x = p(x, extra_options) if self.attn2 is not None: n = self.norm2(x) context_attn2 = context value_attn2 = None if "attn2_patch" in transformer_patches: patch = transformer_patches["attn2_patch"] value_attn2 = context_attn2 for p in patch: n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) attn2_replace_patch = transformer_patches_replace.get("attn2", {}) block_attn2 = transformer_block if block_attn2 not in attn2_replace_patch: block_attn2 = block if block_attn2 in attn2_replace_patch: if value_attn2 is None: value_attn2 = context_attn2 n = self.attn2.to_q(n) context_attn2 = self.attn2.to_k(context_attn2) value_attn2 = self.attn2.to_v(value_attn2) n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) n = self.attn2.to_out(n) else: n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=extra_options) if "attn2_output_patch" in transformer_patches: patch = transformer_patches["attn2_output_patch"] for p in patch: n = p(n, extra_options) x += n x_skip = 0 if self.is_res: x_skip = x x = self.ff(self.norm3(x)) if self.is_res: x += x_skip return x class SpatialTransformer(nn.Module): def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True): super().__init__() if exists(context_dim) and not isinstance(context_dim, list): context_dim = [context_dim] * depth self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) if not use_linear: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) else: self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)] ) if not use_linear: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) else: self.proj_out = nn.Linear(in_channels, inner_dim) self.use_linear = use_linear def forward(self, x, context=None, transformer_options={}): if not isinstance(context, list): context = [context] * len(self.transformer_blocks) b, c, h, w = x.shape x_in = x x = self.norm(x) if not self.use_linear: x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c').contiguous() if self.use_linear: x = self.proj_in(x) for i, block in enumerate(self.transformer_blocks): transformer_options["block_index"] = i x = block(x, context=context[i], transformer_options=transformer_options) if self.use_linear: x = self.proj_out(x) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() if not self.use_linear: x = self.proj_out(x) return x + x_in class Upsample(nn.Module): def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims if use_conv: self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) def forward(self, x, output_shape=None): assert x.shape[1] == self.channels if self.dims == 3: shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] if output_shape is not None: shape[1] = output_shape[3] shape[2] = output_shape[4] else: shape = [x.shape[2] * 2, x.shape[3] * 2] if output_shape is not None: shape[0] = output_shape[2] shape[1] = output_shape[3] x = torch.nn.functional.interpolate(x, size=shape, mode="nearest") if self.use_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResBlock(TimestepBlock): def __init__(self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, dims=2, use_checkpoint=False, up=False, down=False, kernel_size=3, exchange_temb_dims=False, skip_t_emb=False): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.exchange_temb_dims = exchange_temb_dims if isinstance(kernel_size, list): padding = [k // 2 for k in kernel_size] else: padding = kernel_size // 2 self.in_layers = nn.Sequential( nn.GroupNorm(32, channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.skip_t_emb = skip_t_emb if self.skip_t_emb: self.emb_layers = None self.exchange_temb_dims = False else: self.emb_layers = nn.Sequential( nn.SiLU(), nn.Linear(emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels), ) self.out_layers = nn.Sequential( nn.GroupNorm(32, self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding) ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x, emb, transformer_options={}): return checkpoint(self._forward, (x, emb, transformer_options), None, self.use_checkpoint) def _forward(self, x, emb, transformer_options={}): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] if "group_norm_wrapper" in transformer_options: in_norm, in_rest = in_rest[0], in_rest[1:] h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options) h = in_rest(h) else: h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: if "group_norm_wrapper" in transformer_options: in_norm = self.in_layers[0] h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options) h = self.in_layers[1:](h) else: h = self.in_layers(x) emb_out = None if not self.skip_t_emb: emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] if "group_norm_wrapper" in transformer_options: h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options) else: h = out_norm(h) if emb_out is not None: scale, shift = torch.chunk(emb_out, 2, dim=1) h *= (1 + scale) h += shift h = out_rest(h) else: if emb_out is not None: if self.exchange_temb_dims: emb_out = rearrange(emb_out, "b t c ... -> b c t ...") h = h + emb_out if "group_norm_wrapper" in transformer_options: h = transformer_options["group_norm_wrapper"](self.out_layers[0], h, transformer_options) h = self.out_layers[1:](h) else: h = self.out_layers(h) return self.skip_connection(x) + h class IntegratedUNet2DConditionModel(nn.Module, ConfigMixin): config_name = 'config.json' @register_to_config def __init__(self, in_channels, model_channels, out_channels, num_res_blocks, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, num_heads=-1, num_head_channels=-1, use_scale_shift_norm=False, resblock_updown=False, use_spatial_transformer=False, transformer_depth=1, context_dim=None, disable_self_attentions=None, num_attention_blocks=None, disable_middle_self_attn=False, use_linear_in_transformer=False, adm_in_channels=None, transformer_depth_middle=None, transformer_depth_output=None): super().__init__() if context_dim is not None: assert use_spatial_transformer if num_heads == -1: assert num_head_channels != -1 if num_head_channels == -1: assert num_heads != -1 self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: self.num_res_blocks = num_res_blocks if disable_self_attentions is not None: assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) transformer_depth = transformer_depth[:] transformer_depth_output = transformer_depth_output[:] self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.num_classes = num_classes self.use_checkpoint = use_checkpoint self.num_heads = num_heads self.num_head_channels = num_head_channels time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( nn.Linear(model_channels, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim), ) if self.num_classes is not None: if isinstance(self.num_classes, int): self.label_emb = nn.Embedding(num_classes, time_embed_dim) elif self.num_classes == "continuous": self.label_emb = nn.Linear(1, time_embed_dim) elif self.num_classes == "sequential": assert adm_in_channels is not None self.label_emb = nn.Sequential( nn.Sequential( nn.Linear(adm_in_channels, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim), ) ) else: raise ValueError('Bad ADM') self.input_blocks = nn.ModuleList( [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))] ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ ResBlock( channels=ch, emb_channels=time_embed_dim, dropout=dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels num_transformers = transformer_depth.pop(0) if num_transformers > 0: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: layers.append(SpatialTransformer( ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint, use_linear=use_linear_in_transformer) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( channels=ch, emb_channels=time_embed_dim, dropout=dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels mid_block = [ ResBlock( channels=ch, emb_channels=time_embed_dim, dropout=dropout, out_channels=None, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, )] if transformer_depth_middle >= 0: mid_block += [ SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint, use_linear=use_linear_in_transformer), ResBlock( channels=ch, emb_channels=time_embed_dim, dropout=dropout, out_channels=None, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, )] self.middle_block = TimestepEmbedSequential(*mid_block) self._feature_size += ch self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult))[::-1]: for i in range(self.num_res_blocks[level] + 1): ich = input_block_chans.pop() layers = [ ResBlock( channels=ch + ich, emb_channels=time_embed_dim, dropout=dropout, out_channels=model_channels * mult, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = model_channels * mult num_transformers = transformer_depth_output.pop() if num_transformers > 0: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if not exists(num_attention_blocks) or i < num_attention_blocks[level]: layers.append( SpatialTransformer( ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint, use_linear=use_linear_in_transformer ) ) if level and i == self.num_res_blocks[level]: out_ch = ch layers.append( ResBlock( channels=ch, emb_channels=time_embed_dim, dropout=dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, up=True, ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch self.out = nn.Sequential( nn.GroupNorm(32, ch), nn.SiLU(), conv_nd(dims, model_channels, out_channels, 3, padding=1), ) def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): transformer_options["original_shape"] = list(x.shape) transformer_options["transformer_index"] = 0 transformer_patches = transformer_options.get("patches", {}) block_modifiers = transformer_options.get("block_modifiers", []) assert (y is not None) == (self.num_classes is not None) hs = [] t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) emb = self.time_embed(t_emb) if self.num_classes is not None: assert y.shape[0] == x.shape[0] emb = emb + self.label_emb(y) h = x for id, module in enumerate(self.input_blocks): transformer_options["block"] = ("input", id) for block_modifier in block_modifiers: h = block_modifier(h, 'before', transformer_options) h = module(h, emb, context, transformer_options) h = apply_control(h, control, 'input') for block_modifier in block_modifiers: h = block_modifier(h, 'after', transformer_options) if "input_block_patch" in transformer_patches: patch = transformer_patches["input_block_patch"] for p in patch: h = p(h, transformer_options) hs.append(h) if "input_block_patch_after_skip" in transformer_patches: patch = transformer_patches["input_block_patch_after_skip"] for p in patch: h = p(h, transformer_options) transformer_options["block"] = ("middle", 0) for block_modifier in block_modifiers: h = block_modifier(h, 'before', transformer_options) h = self.middle_block(h, emb, context, transformer_options) h = apply_control(h, control, 'middle') for block_modifier in block_modifiers: h = block_modifier(h, 'after', transformer_options) for id, module in enumerate(self.output_blocks): transformer_options["block"] = ("output", id) hsp = hs.pop() hsp = apply_control(hsp, control, 'output') if "output_block_patch" in transformer_patches: patch = transformer_patches["output_block_patch"] for p in patch: h, hsp = p(h, hsp, transformer_options) h = torch.cat([h, hsp], dim=1) del hsp if len(hs) > 0: output_shape = hs[-1].shape else: output_shape = None for block_modifier in block_modifiers: h = block_modifier(h, 'before', transformer_options) h = module(h, emb, context, transformer_options, output_shape) for block_modifier in block_modifiers: h = block_modifier(h, 'after', transformer_options) transformer_options["block"] = ("last", 0) for block_modifier in block_modifiers: h = block_modifier(h, 'before', transformer_options) if "group_norm_wrapper" in transformer_options: out_norm, out_rest = self.out[0], self.out[1:] h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options) h = out_rest(h) else: h = self.out(h) for block_modifier in block_modifiers: h = block_modifier(h, 'after', transformer_options) return h.type(x.dtype)