File size: 3,556 Bytes
607d7d8
 
 
24f4f25
7fb9647
a6b7d4d
 
 
 
dc010b2
a6b7d4d
d8a6944
24065d4
c75a57b
d8a6944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872fed1
 
d8a6944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe72a06
d8a6944
 
04f9d92
 
 
 
d8a6944
24065d4
872fed1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
from transformers import pipeline
from textblob import TextBlob
from transformers import BertForSequenceClassification, AdamW, BertConfig
st.set_page_config(layout='wide', initial_sidebar_state='expanded')
col1, col2= st.columns(2)

with col1:
    st.title("Spamd: Turkish Spam Detector")
    st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers         technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")

with col2:
    st.title("Model:")
    if st.button('Load Model', disabled=False):   
        with st.spinner('Wait for it...'):
            
            import torch
            import numpy as np
            
            from transformers import AutoTokenizer
            tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased")
            from transformers import AutoModel
            model = BertForSequenceClassification.from_pretrained("NimaKL/spamd_model")
            
            token_id = []
            attention_masks = []
            
            def preprocessing(input_text, tokenizer):
              '''
              Returns <class transformers.tokenization_utils_base.BatchEncoding> with the following fields:
                - input_ids: list of token ids
                - token_type_ids: list of token type ids
                - attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True).
              '''
              return tokenizer.encode_plus(
                                    input_text,
                                    add_special_tokens = True,
                                    max_length = 32,
                                    pad_to_max_length = True,
                                    return_attention_mask = True,
                                    return_tensors = 'pt'
                               )
            
            device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            #Used for printing the name if the variables. Removing it will not intrupt the project.

            st.success("Model Loaded!")
            def predict(new_sentence):
                # We need Token IDs and Attention Mask for inference on the new sentence
                test_ids = []
                test_attention_mask = []
            
                # Apply the tokenizer
                encoding = preprocessing(new_sentence, tokenizer)
            
                # Extract IDs and Attention Mask
                test_ids.append(encoding['input_ids'])
                test_attention_mask.append(encoding['attention_mask'])
                test_ids = torch.cat(test_ids, dim = 0)
                test_attention_mask = torch.cat(test_attention_mask, dim = 0)
            
                # Forward pass, calculate logit predictions
                with torch.no_grad():
                    output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device))
            
                prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
                pred = 'Predicted Class: '+ prediction
    st.header(pred)
    text = st.text_input("Enter the text you'd like to analyze for spam.")
    if text or st.button('Analyze'):
        predict(text)