NimaKL commited on
Commit
19f23ad
Β·
1 Parent(s): 023198d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -4,7 +4,7 @@ from textblob import TextBlob
4
  from transformers import BertForSequenceClassification, AdamW, BertConfig
5
  st.set_page_config(layout='wide', initial_sidebar_state='expanded')
6
  col1, col2= st.columns(2)
7
-
8
  with col1:
9
  st.title("Spamd: Turkish Spam Detector")
10
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
@@ -55,10 +55,12 @@ if st.button('Load Model', disabled=False):
55
  prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
56
  pred = 'Predicted Class: '+ prediction
57
  return pred
58
- with col2:
59
- text = st.text_input("Enter the text you'd like to analyze for spam.")
60
- if text or st.button('Analyze'):
61
- st.header(predict(text))
 
 
62
 
63
 
64
 
 
4
  from transformers import BertForSequenceClassification, AdamW, BertConfig
5
  st.set_page_config(layout='wide', initial_sidebar_state='expanded')
6
  col1, col2= st.columns(2)
7
+ flag = False
8
  with col1:
9
  st.title("Spamd: Turkish Spam Detector")
10
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
 
55
  prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
56
  pred = 'Predicted Class: '+ prediction
57
  return pred
58
+ flag = True
59
+ if flag:
60
+ with col2:
61
+ text = st.text_input("Enter the text you'd like to analyze for spam.")
62
+ if text or st.button('Analyze'):
63
+ st.header(predict(text))
64
 
65
 
66