NimaKL commited on
Commit
1e6658d
Β·
1 Parent(s): 6db4b2c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -4,13 +4,14 @@ from textblob import TextBlob
4
  from transformers import BertForSequenceClassification, AdamW, BertConfig
5
  st.set_page_config(layout='wide', initial_sidebar_state='expanded')
6
  col1, col2= st.columns(2)
7
- flag = True
 
8
  with col1:
9
  st.title("Spamd: Turkish Spam Detector")
10
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
11
  with col2:
12
- text = st.text_input("Enter the text you'd like to analyze for spam.", disabled=flag, key="1")
13
- aButton = st.button('Analyze', disabled=flag, key="1")
14
  if st.button('Load Model', disabled=False):
15
  with st.spinner('Wait for it...'):
16
  import torch
@@ -57,8 +58,8 @@ if st.button('Load Model', disabled=False):
57
  prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
58
  pred = 'Predicted Class: '+ prediction
59
  return pred
60
- flag = False
61
- aButton=False
62
  if not flag:
63
  with col2:
64
  if text or aButton:
 
4
  from transformers import BertForSequenceClassification, AdamW, BertConfig
5
  st.set_page_config(layout='wide', initial_sidebar_state='expanded')
6
  col1, col2= st.columns(2)
7
+ placeholder = st.empty()
8
+ placeholder2 = st.empty()
9
  with col1:
10
  st.title("Spamd: Turkish Spam Detector")
11
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
12
  with col2:
13
+ text = placeholder.text_input("Enter the text you'd like to analyze for spam.", disabled=True, key="1")
14
+ aButton = placeholder2.button('Analyze', disabled=True, key="1")
15
  if st.button('Load Model', disabled=False):
16
  with st.spinner('Wait for it...'):
17
  import torch
 
58
  prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
59
  pred = 'Predicted Class: '+ prediction
60
  return pred
61
+ placeholder.text_input("Enter the text you'd like to analyze for spam.", disabled=False, key="2")
62
+ placeholder2.button('Analyze', disabled=False, key="2")
63
  if not flag:
64
  with col2:
65
  if text or aButton: