NimaKL commited on
Commit
b03dcf5
Β·
1 Parent(s): 22a0124

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -10,7 +10,7 @@ with col1:
10
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
11
  with col2:
12
  text = st.text_input("Enter the text you'd like to analyze for spam.", disabled=flag)
13
- st.button('Analyze')
14
  if st.button('Load Model', disabled=False):
15
  with st.spinner('Wait for it...'):
16
  import torch
@@ -57,10 +57,11 @@ if st.button('Load Model', disabled=False):
57
  prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
58
  pred = 'Predicted Class: '+ prediction
59
  return pred
60
- flag = False
 
61
  if not flag:
62
  with col2:
63
- if text or st.button('Analyze'):
64
  st.header(predict(text))
65
 
66
 
 
10
  st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.")
11
  with col2:
12
  text = st.text_input("Enter the text you'd like to analyze for spam.", disabled=flag)
13
+ aButton = st.button('Analyze')
14
  if st.button('Load Model', disabled=False):
15
  with st.spinner('Wait for it...'):
16
  import torch
 
57
  prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
58
  pred = 'Predicted Class: '+ prediction
59
  return pred
60
+ flag = False
61
+ text(disabled=flag)
62
  if not flag:
63
  with col2:
64
+ if text or aButton:
65
  st.header(predict(text))
66
 
67