Spaces:
Running
Running
File size: 5,679 Bytes
62c311b a7f66d4 81a136d 28d0426 c8d1c47 a1b2fed 62c311b c8d1c47 107dbe8 a7f66d4 c8d1c47 5bc427c a7f66d4 c8d1c47 ea6e24c c8d1c47 ea6e24c a1b2fed c8d1c47 a1b2fed c8d1c47 a1b2fed a7f66d4 62c311b 7e55fba a346939 ea6e24c a346939 5ff1805 c8d1c47 a346939 f1dc8a7 a346939 ea6e24c c8d1c47 a346939 f1dc8a7 a346939 f1dc8a7 c8d1c47 a346939 a7c9258 c8d1c47 a346939 f1dc8a7 a346939 f1dc8a7 a1b2fed a346939 c8d1c47 a346939 c8d1c47 a346939 c8d1c47 a346939 c8d1c47 a346939 c8d1c47 a346939 c8d1c47 a1b2fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import streamlit as st
import requests
from transformers import pipeline
from deepface import DeepFace
from PIL import Image
import io
import re
# Load Fake News Detection Model from Hugging Face
fake_news_pipeline = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
def classify_text(news_text):
"""Classifies text as Fake or Real with accuracy."""
result = fake_news_pipeline(news_text)[0]
label = result['label'].lower()
score = result['score'] * 100 # Convert to percentage
return ("Fake" if label == "fake" else "Real"), round(score, 2)
def analyze_image(image):
"""Analyzes image using DeepFace and provides a result."""
try:
analysis = DeepFace.analyze(image, actions=['emotion'])
dominant_emotion = analysis[0]['dominant_emotion']
return f"Analysis Complete - Dominant Emotion: {dominant_emotion}", 90.0 # Dummy Accuracy
except Exception as e:
return f"Error: {str(e)}", 0.0
def verify_news(news_text):
"""Generates a Google search link for verification."""
search_url = f"https://www.google.com/search?q={'+'.join(news_text.split())}"
return search_url
def extract_video_id(video_url):
"""Extracts the video ID from a YouTube URL."""
pattern = r"(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|.*[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]{11})"
match = re.search(pattern, video_url)
return match.group(1) if match else None
def fetch_video_metadata(video_url):
"""Fetches video metadata and runs Fake News detection on it."""
video_id = extract_video_id(video_url)
if not video_id:
return "Invalid Video URL", 0.0
api_key = "YOUR_YOUTUBE_API_KEY" # Replace with a valid YouTube API Key
metadata_url = f"https://www.googleapis.com/youtube/v3/videos?id={video_id}&part=snippet&key={api_key}"
response = requests.get(metadata_url)
if response.status_code == 200:
data = response.json()
if "items" in data and len(data["items"]) > 0:
video_details = data["items"][0]["snippet"]
video_title = video_details["title"]
video_description = video_details["description"]
combined_text = video_title + " " + video_description
# Classify the video metadata text
result, accuracy = classify_text(combined_text)
return result, accuracy
return "Unknown", 0.0
# Streamlit UI
st.set_page_config(page_title="Fake News Detector", layout="wide")
st.title("π° Fake News Detector")
# πΉ Three Separate Sections for Input
st.subheader("π Choose an Input Type")
col1, col2, col3 = st.columns(3)
# πΉ Text Input Section
with col1:
st.markdown("### π Text Input")
news_text = st.text_area("Enter the news content to check:", height=150)
analyze_text_clicked = st.button("Analyze News")
if analyze_text_clicked:
if not news_text.strip():
st.warning("Please enter some text.")
else:
result, accuracy = classify_text(news_text)
st.session_state["text_result"] = result
st.session_state["text_accuracy"] = accuracy
# πΉ Image Upload Section
with col2:
st.markdown("### πΌοΈ Image Upload")
uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
analyze_image_clicked = st.button("Analyze Image")
if uploaded_image and analyze_image_clicked:
image = Image.open(uploaded_image)
result, accuracy = analyze_image(image)
st.session_state["image_result"] = result
st.session_state["image_accuracy"] = accuracy
st.session_state["news_image"] = image # Store Image for Display
# πΉ Video Link Section
with col3:
st.markdown("### π₯ Video Link")
video_url = st.text_input("Enter the video link:")
analyze_video_clicked = st.button("Analyze Video")
if analyze_video_clicked:
if not video_url.strip():
st.warning("Please enter a valid video link.")
else:
result, accuracy = fetch_video_metadata(video_url)
st.session_state["video_result"] = result
st.session_state["video_accuracy"] = accuracy
st.session_state["video_url"] = video_url # Store Video URL for Display
# πΉ Results Section
st.subheader("π Analysis Results")
# πΉ Text Result
if "text_result" in st.session_state:
result = st.session_state["text_result"]
accuracy = st.session_state["text_accuracy"]
if result == "Fake":
st.error(f"β This news is **Fake**! (Accuracy: {accuracy}%)", icon="β οΈ")
else:
st.success(f"β
This news is **Real**! (Accuracy: {accuracy}%)", icon="β
")
verification_link = verify_news(news_text)
st.markdown(f"[π Verify on Google]({verification_link})")
# πΉ Image Result
if "image_result" in st.session_state:
st.image(st.session_state["news_image"], caption="Uploaded Image", use_column_width=True)
st.info(f"πΌοΈ **Image Analysis Result:** {st.session_state['image_result']} (Accuracy: {st.session_state['image_accuracy']}%)")
# πΉ Video Result
if "video_result" in st.session_state:
st.video(st.session_state["video_url"])
if st.session_state["video_result"] == "Fake":
st.error(f"β **This video is Fake!** (Accuracy: {st.session_state['video_accuracy']}%)")
elif st.session_state["video_result"] == "Real":
st.success(f"β
**This video is Real!** (Accuracy: {st.session_state['video_accuracy']}%)")
else:
st.warning("β οΈ Unable to verify the authenticity of this video.")
|