File size: 5,679 Bytes
62c311b
a7f66d4
81a136d
28d0426
c8d1c47
 
a1b2fed
62c311b
c8d1c47
 
107dbe8
a7f66d4
c8d1c47
5bc427c
 
 
 
a7f66d4
c8d1c47
 
 
 
 
 
 
 
 
ea6e24c
c8d1c47
 
ea6e24c
 
a1b2fed
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d1c47
a1b2fed
c8d1c47
 
a1b2fed
 
 
 
 
 
 
 
 
 
a7f66d4
62c311b
7e55fba
 
 
a346939
 
ea6e24c
a346939
5ff1805
c8d1c47
a346939
 
 
 
 
 
f1dc8a7
 
 
 
a346939
 
ea6e24c
c8d1c47
a346939
 
f1dc8a7
a346939
 
 
f1dc8a7
c8d1c47
a346939
 
 
a7c9258
c8d1c47
a346939
 
f1dc8a7
a346939
 
 
f1dc8a7
 
 
a1b2fed
a346939
 
 
c8d1c47
 
 
a346939
 
 
 
 
c8d1c47
 
a346939
c8d1c47
a346939
 
 
 
 
 
 
c8d1c47
a346939
c8d1c47
a346939
 
c8d1c47
a1b2fed
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import streamlit as st
import requests
from transformers import pipeline
from deepface import DeepFace
from PIL import Image
import io
import re

# Load Fake News Detection Model from Hugging Face
fake_news_pipeline = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")

def classify_text(news_text):
    """Classifies text as Fake or Real with accuracy."""
    result = fake_news_pipeline(news_text)[0]
    label = result['label'].lower()
    score = result['score'] * 100  # Convert to percentage
    return ("Fake" if label == "fake" else "Real"), round(score, 2)

def analyze_image(image):
    """Analyzes image using DeepFace and provides a result."""
    try:
        analysis = DeepFace.analyze(image, actions=['emotion'])
        dominant_emotion = analysis[0]['dominant_emotion']
        return f"Analysis Complete - Dominant Emotion: {dominant_emotion}", 90.0  # Dummy Accuracy
    except Exception as e:
        return f"Error: {str(e)}", 0.0

def verify_news(news_text):
    """Generates a Google search link for verification."""
    search_url = f"https://www.google.com/search?q={'+'.join(news_text.split())}"
    return search_url

def extract_video_id(video_url):
    """Extracts the video ID from a YouTube URL."""
    pattern = r"(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|.*[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]{11})"
    match = re.search(pattern, video_url)
    return match.group(1) if match else None

def fetch_video_metadata(video_url):
    """Fetches video metadata and runs Fake News detection on it."""
    video_id = extract_video_id(video_url)
    if not video_id:
        return "Invalid Video URL", 0.0

    api_key = "YOUR_YOUTUBE_API_KEY"  # Replace with a valid YouTube API Key
    metadata_url = f"https://www.googleapis.com/youtube/v3/videos?id={video_id}&part=snippet&key={api_key}"
    
    response = requests.get(metadata_url)
    if response.status_code == 200:
        data = response.json()
        if "items" in data and len(data["items"]) > 0:
            video_details = data["items"][0]["snippet"]
            video_title = video_details["title"]
            video_description = video_details["description"]
            combined_text = video_title + " " + video_description

            # Classify the video metadata text
            result, accuracy = classify_text(combined_text)
            return result, accuracy
    return "Unknown", 0.0

# Streamlit UI
st.set_page_config(page_title="Fake News Detector", layout="wide")
st.title("πŸ“° Fake News Detector")

# πŸ”Ή Three Separate Sections for Input
st.subheader("πŸ” Choose an Input Type")

col1, col2, col3 = st.columns(3)

# πŸ”Ή Text Input Section
with col1:
    st.markdown("### πŸ“„ Text Input")
    news_text = st.text_area("Enter the news content to check:", height=150)
    analyze_text_clicked = st.button("Analyze News")
    
    if analyze_text_clicked:
        if not news_text.strip():
            st.warning("Please enter some text.")
        else:
            result, accuracy = classify_text(news_text)
            st.session_state["text_result"] = result
            st.session_state["text_accuracy"] = accuracy

# πŸ”Ή Image Upload Section
with col2:
    st.markdown("### πŸ–ΌοΈ Image Upload")
    uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
    analyze_image_clicked = st.button("Analyze Image")
    
    if uploaded_image and analyze_image_clicked:
        image = Image.open(uploaded_image)
        result, accuracy = analyze_image(image)
        st.session_state["image_result"] = result
        st.session_state["image_accuracy"] = accuracy
        st.session_state["news_image"] = image  # Store Image for Display

# πŸ”Ή Video Link Section
with col3:
    st.markdown("### πŸŽ₯ Video Link")
    video_url = st.text_input("Enter the video link:")
    analyze_video_clicked = st.button("Analyze Video")
    
    if analyze_video_clicked:
        if not video_url.strip():
            st.warning("Please enter a valid video link.")
        else:
            result, accuracy = fetch_video_metadata(video_url)
            st.session_state["video_result"] = result
            st.session_state["video_accuracy"] = accuracy
            st.session_state["video_url"] = video_url  # Store Video URL for Display

# πŸ”Ή Results Section
st.subheader("πŸ“Š Analysis Results")

# πŸ”Ή Text Result
if "text_result" in st.session_state:
    result = st.session_state["text_result"]
    accuracy = st.session_state["text_accuracy"]
    
    if result == "Fake":
        st.error(f"❌ This news is **Fake**! (Accuracy: {accuracy}%)", icon="⚠️")
    else:
        st.success(f"βœ… This news is **Real**! (Accuracy: {accuracy}%)", icon="βœ…")
    
    verification_link = verify_news(news_text)
    st.markdown(f"[πŸ”Ž Verify on Google]({verification_link})")

# πŸ”Ή Image Result
if "image_result" in st.session_state:
    st.image(st.session_state["news_image"], caption="Uploaded Image", use_column_width=True)
    st.info(f"πŸ–ΌοΈ **Image Analysis Result:** {st.session_state['image_result']} (Accuracy: {st.session_state['image_accuracy']}%)")

# πŸ”Ή Video Result
if "video_result" in st.session_state:
    st.video(st.session_state["video_url"])
    if st.session_state["video_result"] == "Fake":
        st.error(f"❌ **This video is Fake!** (Accuracy: {st.session_state['video_accuracy']}%)")
    elif st.session_state["video_result"] == "Real":
        st.success(f"βœ… **This video is Real!** (Accuracy: {st.session_state['video_accuracy']}%)")
    else:
        st.warning("⚠️ Unable to verify the authenticity of this video.")