Spaces:
Sleeping
Sleeping
File size: 7,872 Bytes
62c311b a7f66d4 81a136d 28d0426 c8d1c47 a1b2fed 2ee8dae 62c311b c8d1c47 107dbe8 a7f66d4 c8d1c47 5bc427c a7f66d4 c8d1c47 2ee8dae c8d1c47 2ee8dae c8d1c47 2ee8dae c8d1c47 ea6e24c 2ee8dae ea6e24c a1b2fed 2ee8dae a1b2fed c8d1c47 a1b2fed c8d1c47 a1b2fed 2ee8dae a7f66d4 62c311b 7e55fba a346939 ea6e24c a346939 5ff1805 c8d1c47 a346939 f1dc8a7 2ee8dae a346939 2ee8dae ea6e24c c8d1c47 a346939 f1dc8a7 a346939 f1dc8a7 2ee8dae a346939 2ee8dae a346939 a7c9258 c8d1c47 a346939 f1dc8a7 a346939 f1dc8a7 2ee8dae a346939 2ee8dae a346939 c8d1c47 a346939 c8d1c47 a346939 c8d1c47 a346939 2ee8dae a346939 a5b7aa4 a346939 c8d1c47 a5b7aa4 c8d1c47 a346939 c8d1c47 a5b7aa4 a1b2fed a5b7aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import requests
from transformers import pipeline
from deepface import DeepFace
from PIL import Image
import io
import re
import base64
# Load Fake News Detection Model from Hugging Face
fake_news_pipeline = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
def classify_text(news_text):
"""Classifies text as Fake or Real with accuracy."""
result = fake_news_pipeline(news_text)[0]
label = result['label'].lower()
score = result['score'] * 100 # Convert to percentage
return ("Fake" if label == "fake" else "Real"), round(score, 2)
def analyze_image(image):
"""Analyzes image using DeepFace and Google Reverse Image Search."""
try:
analysis = DeepFace.analyze(image, actions=['emotion'])
dominant_emotion = analysis[0]['dominant_emotion']
reverse_search_url = reverse_image_search(image)
return f"Analysis: {dominant_emotion}", 90.0, reverse_search_url # Dummy Accuracy
except Exception as e:
return f"Error: {str(e)}", 0.0, None
def reverse_image_search(image):
"""Creates a Google Reverse Image Search link for verification."""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
encoded_img = base64.b64encode(buffered.getvalue()).decode()
return f"https://www.google.com/searchbyimage?image_url=data:image/png;base64,{encoded_img}"
def verify_news(news_text):
"""Searches trusted fact-checking websites for news verification."""
sources = [
("BBC News", "https://www.bbc.com/news"),
("CNN", "https://www.cnn.com"),
("Reuters", "https://www.reuters.com"),
("FactCheck.org", "https://www.factcheck.org"),
("Snopes", "https://www.snopes.com"),
("PolitiFact", "https://www.politifact.com"),
("Google Search", f"https://www.google.com/search?q={'+'.join(news_text.split())}")
]
return sources
def extract_video_id(video_url):
"""Extracts the video ID from a YouTube URL."""
pattern = r"(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|.*[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]{11})"
match = re.search(pattern, video_url)
return match.group(1) if match else None
def fetch_video_metadata(video_url):
"""Fetches video metadata and runs Fake News detection on it."""
video_id = extract_video_id(video_url)
if not video_id:
return "Invalid Video URL", 0.0, None
api_key = "YOUR_YOUTUBE_API_KEY" # Replace with a valid YouTube API Key
metadata_url = f"https://www.googleapis.com/youtube/v3/videos?id={video_id}&part=snippet&key={api_key}"
response = requests.get(metadata_url)
if response.status_code == 200:
data = response.json()
if "items" in data and len(data["items"]) > 0:
video_details = data["items"][0]["snippet"]
video_title = video_details["title"]
video_description = video_details["description"]
combined_text = video_title + " " + video_description
# Classify the video metadata text
result, accuracy = classify_text(combined_text)
verification_links = verify_news(video_title)
return result, accuracy, verification_links
return "Unknown", 0.0, None
# Streamlit UI
st.set_page_config(page_title="Fake News Detector", layout="wide")
st.title("π° Fake News Detector")
# πΉ Three Separate Sections for Input
st.subheader("π Choose an Input Type")
col1, col2, col3 = st.columns(3)
# πΉ Text Input Section
with col1:
st.markdown("### π Text Input")
news_text = st.text_area("Enter the news content to check:", height=150)
analyze_text_clicked = st.button("Analyze News")
if analyze_text_clicked:
if not news_text.strip():
st.warning("Please enter some text.")
else:
result, accuracy = classify_text(news_text)
verification_links = verify_news(news_text)
st.session_state["text_result"] = result
st.session_state["text_accuracy"] = accuracy
st.session_state["text_verification"] = verification_links
# πΉ Image Upload Section
with col2:
st.markdown("### πΌοΈ Image Upload")
uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
analyze_image_clicked = st.button("Analyze Image")
if uploaded_image and analyze_image_clicked:
image = Image.open(uploaded_image)
result, accuracy, reverse_search_url = analyze_image(image)
st.session_state["image_result"] = result
st.session_state["image_accuracy"] = accuracy
st.session_state["image_search_url"] = reverse_search_url
st.session_state["news_image"] = image # Store Image for Display
# πΉ Video Link Section
with col3:
st.markdown("### π₯ Video Link")
video_url = st.text_input("Enter the video link:")
analyze_video_clicked = st.button("Analyze Video")
if analyze_video_clicked:
if not video_url.strip():
st.warning("Please enter a valid video link.")
else:
result, accuracy, verification_links = fetch_video_metadata(video_url)
st.session_state["video_result"] = result
st.session_state["video_accuracy"] = accuracy
st.session_state["video_verification"] = verification_links
st.session_state["video_url"] = video_url # Store Video URL for Display
# πΉ Results Section
st.subheader("π Analysis Results")
# πΉ Text Result
if "text_result" in st.session_state:
result = st.session_state["text_result"]
accuracy = st.session_state["text_accuracy"]
if result == "Fake":
st.error(f"β This news is **Fake**! (Accuracy: {accuracy}%)", icon="β οΈ")
else:
st.success(f"β
This news is **Real**! (Accuracy: {accuracy}%)", icon="β
")
st.subheader("π Trusted Fact-Checking Sources")
for name, link in st.session_state["text_verification"]:
st.markdown(f"[π {name}]({link})")
# πΉ Image Analysis Result Section
if "image_result" in st.session_state:
st.image(st.session_state["news_image"], caption="Uploaded Image", use_column_width=True)
if st.session_state["image_result"] == "Fake":
st.error(f"β **This image is likely Fake!** (Accuracy: {st.session_state['image_accuracy']}%)")
elif st.session_state["image_result"] == "Real":
st.success(f"β
**This image is likely Real!** (Accuracy: {st.session_state['image_accuracy']}%)")
else:
st.warning("β οΈ Unable to verify the authenticity of this image.")
# β
Add verification links
if st.session_state["image_verification"]:
st.subheader("π Trusted Fact-Checking Sources")
for name, link in st.session_state["image_verification"]:
st.markdown(f"[π {name}]({link})")
else:
st.warning("No verification sources available for this image.")
# πΉ Video Result
if "video_result" in st.session_state:
st.video(st.session_state["video_url"])
if st.session_state["video_result"] == "Fake":
st.error(f"β **This video is Fake!** (Accuracy: {st.session_state['video_accuracy']}%)")
elif st.session_state["video_result"] == "Real":
st.success(f"β
**This video is Real!** (Accuracy: {st.session_state['video_accuracy']}%)")
else:
st.warning("β οΈ Unable to verify the authenticity of this video.")
# β
Check if verification links exist before iterating
if st.session_state["video_verification"]:
st.subheader("π Trusted Fact-Checking Sources")
for name, link in st.session_state["video_verification"]:
st.markdown(f"[π {name}]({link})")
else:
st.warning("No verification sources available for this video.")
|