Spaces:
Sleeping
Sleeping
File size: 3,677 Bytes
62c311b a7f66d4 81a136d 097294d a7f66d4 a906516 62c311b a906516 ea6e24c 107dbe8 a906516 a7f66d4 5bc427c a7f66d4 ea6e24c a906516 a7f66d4 a906516 a7f66d4 62c311b 7e55fba ea6e24c f1dc8a7 5ff1805 ea6e24c f1dc8a7 ea6e24c f1dc8a7 ea6e24c a7c9258 f1dc8a7 ea6e24c f1dc8a7 ea6e24c f1dc8a7 a906516 a7c9258 ea6e24c f1dc8a7 ea6e24c f1dc8a7 ea6e24c f1dc8a7 a906516 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import streamlit as st
import requests
from transformers import pipeline
from PIL import Image
import torchvision.transforms as transforms
import torch
import cv2
import numpy as np
# Load Fake News Detection Model
fake_news_pipeline = pipeline("text-classification", model="roberta-base-openai-detector")
# Function to classify text news
def classify_text(news_text):
result = fake_news_pipeline(news_text)[0]
label = result['label'].lower()
score = result['score'] * 100 # Convert to percentage
return ("Fake" if label == "fake" else "Real"), round(score, 2)
# Function to verify news with Google Fact Check API
def verify_news(news_text):
search_url = f"https://toolbox.google.com/factcheck/explorer/search/{'+'.join(news_text.split())}"
return search_url
# Function to analyze images for fake news
def analyze_image(image):
transform = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
image_tensor = transform(image).unsqueeze(0)
# Convert to OpenCV format
image_cv = np.array(image)
image_cv = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)
# Apply Fake Image Detection (Basic Example)
edges = cv2.Canny(image_cv, 100, 200)
edge_percentage = np.sum(edges) / (image_cv.shape[0] * image_cv.shape[1])
if edge_percentage > 0.1:
return "β This image might be **manipulated** or **deepfake**!"
else:
return "β
This image appears to be **authentic**."
# Function to analyze video metadata
def analyze_video(video_url):
api_url = f"https://noembed.com/embed?url={video_url}"
response = requests.get(api_url).json()
if "title" in response:
title = response["title"]
source = response["provider_name"]
return f"π₯ Video Title: {title}\nπ Source: {source}"
else:
return "β Unable to fetch video details! Check if the link is correct."
# Streamlit UI
st.set_page_config(page_title="Fake News Detector", layout="wide")
st.title("π° Fake News Detector")
# Sidebar Navigation
st.sidebar.title("Select Input Type")
option = st.sidebar.radio("Choose an option", ["Text", "Image", "Video Link"])
# Input Sections
col1, col2, col3 = st.columns(3)
# Text Analysis Section
with col1:
st.subheader("π Text News Check")
news_text = st.text_area("Enter the news content:", height=200)
if st.button("Analyze News"):
if not news_text.strip():
st.warning("Please enter some text.")
else:
result, accuracy = classify_text(news_text)
verification_link = verify_news(news_text)
if result == "Fake":
st.error(f"β Likely **Fake News**! (Confidence: {accuracy}%)")
else:
st.success(f"β
Likely **Real News**! (Confidence: {accuracy}%)")
st.markdown(f"[π Verify on Google Fact Check]({verification_link})")
# Image Upload Section
with col2:
st.subheader("πΌοΈ Image News Check")
uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
if uploaded_image and st.button("Analyze Image"):
image = Image.open(uploaded_image)
st.image(image, caption="Uploaded Image", use_column_width=True)
result = analyze_image(image)
st.info(result)
# Video Link Section
with col3:
st.subheader("π₯ Video News Check")
video_url = st.text_input("Enter the video link:")
if st.button("Analyze Video"):
if not video_url.strip():
st.warning("Please enter a valid video link.")
else:
st.video(video_url)
result = analyze_video(video_url)
st.info(result)
|