Spaces:
Sleeping
Sleeping
File size: 4,824 Bytes
62c311b a7f66d4 81a136d 28d0426 c8d1c47 62c311b c8d1c47 107dbe8 a7f66d4 c8d1c47 5bc427c a7f66d4 c8d1c47 ea6e24c c8d1c47 ea6e24c c8d1c47 a7f66d4 62c311b 7e55fba c8d1c47 ea6e24c c8d1c47 5ff1805 c8d1c47 ea6e24c f1dc8a7 c8d1c47 ea6e24c c8d1c47 f1dc8a7 ea6e24c f1dc8a7 c8d1c47 a7c9258 c8d1c47 f1dc8a7 ea6e24c f1dc8a7 c8d1c47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import streamlit as st
import requests
from transformers import pipeline
from deepface import DeepFace
from PIL import Image
import io
# Load Fake News Detection Model from Hugging Face
fake_news_pipeline = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
def classify_text(news_text):
"""Classifies text as Fake or Real with accuracy."""
result = fake_news_pipeline(news_text)[0]
label = result['label'].lower()
score = result['score'] * 100 # Convert to percentage
return ("Fake" if label == "fake" else "Real"), round(score, 2)
def analyze_image(image):
"""Analyzes image using DeepFace and provides a result."""
try:
analysis = DeepFace.analyze(image, actions=['emotion'])
dominant_emotion = analysis[0]['dominant_emotion']
return f"Analysis Complete - Dominant Emotion: {dominant_emotion}", 90.0 # Dummy Accuracy
except Exception as e:
return f"Error: {str(e)}", 0.0
def verify_news(news_text):
"""Generates a Google search link for verification."""
search_url = f"https://www.google.com/search?q={'+'.join(news_text.split())}"
return search_url
def check_video_fake_news(video_url):
"""Uses Google Fact-Check API for video verification."""
api_url = f"https://factchecktools.googleapis.com/v1alpha1/claims:search?query={video_url}&key=YOUR_API_KEY"
response = requests.get(api_url)
if response.status_code == 200:
data = response.json()
if 'claims' in data:
return "Fake", 85.0 # Fake News Detected (Dummy Value)
else:
return "Real", 92.0 # Seems Real (Dummy Value)
return "Unknown", 0.0 # Could Not Verify
# Streamlit UI
st.set_page_config(page_title="Fake News Detector", layout="wide")
st.title("π° Fake News Detector")
# πΉ Sidebar for Input Selection
st.sidebar.title("Select Input Type")
option = st.sidebar.radio("Choose an option", ["Text", "Image", "Video Link"])
# πΉ Ensure session state variables are initialized
for key in ["analyze_text", "result_text", "accuracy_text", "analyze_image", "analyze_video", "news_image", "video_url"]:
if key not in st.session_state:
st.session_state[key] = None
# πΉ Text Input Section
if option == "Text":
news_text = st.text_area("Enter the news content to check:", height=200)
if st.button("Analyze News"):
if not news_text.strip():
st.warning("Please enter some text.")
else:
result, accuracy = classify_text(news_text)
st.session_state["result_text"] = result
st.session_state["accuracy_text"] = accuracy
# πΉ Image Upload Section
elif option == "Image":
uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
if uploaded_image and st.button("Analyze Image"):
image = Image.open(uploaded_image)
st.session_state["news_image"] = image
result, accuracy = analyze_image(image)
st.session_state["result_text"] = result
st.session_state["accuracy_text"] = accuracy
# πΉ Video Link Section
elif option == "Video Link":
video_url = st.text_input("Enter the video link:")
if st.button("Analyze Video"):
if not video_url.strip():
st.warning("Please enter a valid video link.")
else:
st.session_state["video_url"] = video_url
result, accuracy = check_video_fake_news(video_url)
st.session_state["result_text"] = result
st.session_state["accuracy_text"] = accuracy
# πΉ Results Section
st.subheader("π Analysis Results")
if st.session_state["result_text"]:
result = st.session_state["result_text"]
accuracy = st.session_state["accuracy_text"]
if result == "Fake":
st.error(f"β This is likely **Fake News**! (Accuracy: {accuracy}%)", icon="β οΈ")
else:
st.success(f"β
This is likely **Real News**! (Accuracy: {accuracy}%)", icon="β
")
# πΉ Verification Sources
st.subheader("π Verification & Trusted Sources")
sources = [
"https://www.bbc.com/news",
"https://www.cnn.com",
"https://www.reuters.com",
"https://factcheck.org",
"https://www.snopes.com",
"https://www.politifact.com"
]
for link in sources:
st.markdown(f"[π {link}]({link})")
if option == "Text":
verification_link = verify_news(st.session_state["result_text"])
st.markdown(f"[π Verify on Google]({verification_link})")
# πΉ Display Image if Uploaded
if st.session_state["news_image"]:
st.image(st.session_state["news_image"], caption="Uploaded Image", use_column_width=True)
# πΉ Display Video if Entered
if st.session_state["video_url"]:
st.video(st.session_state["video_url"])
|