Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,150 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
from transformers import pipeline
|
4 |
-
from deepface import DeepFace
|
5 |
from PIL import Image
|
6 |
-
import cv2
|
7 |
import torch
|
8 |
import torchvision.transforms as transforms
|
|
|
9 |
import numpy as np
|
10 |
-
import
|
11 |
-
import
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
|
|
18 |
label = result['label'].lower()
|
19 |
-
score = result['score'] * 100
|
20 |
return ("Fake" if label == "fake" else "Real"), round(score, 2)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def verify_news(news_text):
|
23 |
-
sources = [
|
24 |
-
"https://www.bbc.com/news",
|
25 |
-
"https://www.cnn.com",
|
26 |
-
"https://www.reuters.com",
|
27 |
-
"https://factcheck.org",
|
28 |
-
"https://www.snopes.com",
|
29 |
-
"https://www.politifact.com"
|
30 |
-
]
|
31 |
search_url = f"https://www.google.com/search?q={'+'.join(news_text.split())}"
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
def analyze_video(video_path):
|
42 |
-
cap = cv2.VideoCapture(video_path)
|
43 |
-
frames = []
|
44 |
-
while cap.isOpened():
|
45 |
-
ret, frame = cap.read()
|
46 |
-
if not ret:
|
47 |
break
|
48 |
-
|
49 |
-
cap.release()
|
50 |
-
return "Real", 80.0 if len(frames) > 10 else "Fake", 40.0
|
51 |
|
|
|
52 |
st.set_page_config(page_title="Fake News Detector", layout="wide")
|
53 |
st.title("π° Fake News Detector")
|
54 |
|
55 |
-
|
56 |
-
|
57 |
st.sidebar.title("Select Input Type")
|
58 |
-
option = st.sidebar.radio("Choose an option", ["Text", "Image", "Video"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
60 |
if option == "Text":
|
61 |
-
news_text = st.text_area("Enter the news content:")
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
st.write(f"Result: **{result}** (Accuracy: {accuracy}%)")
|
67 |
-
for link in sources:
|
68 |
-
st.markdown(f"[π {link}]({link})")
|
69 |
-
st.markdown(f"[π Verify on Google]({verification_link})")
|
70 |
-
else:
|
71 |
st.warning("Please enter some text.")
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
elif option == "Image":
|
74 |
-
uploaded_image = st.file_uploader("Upload
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
if
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
from transformers import pipeline
|
|
|
4 |
from PIL import Image
|
|
|
5 |
import torch
|
6 |
import torchvision.transforms as transforms
|
7 |
+
import cv2
|
8 |
import numpy as np
|
9 |
+
from deepface import DeepFace
|
10 |
+
from bs4 import BeautifulSoup
|
11 |
|
12 |
+
# Load Fake News Detection Model (Text)
|
13 |
+
fake_news_pipeline = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
|
14 |
|
15 |
+
# Function to classify text as Fake or Real
|
16 |
+
def classify_text(news_text):
|
17 |
+
result = fake_news_pipeline(news_text)[0]
|
18 |
label = result['label'].lower()
|
19 |
+
score = result['score'] * 100 # Convert to percentage
|
20 |
return ("Fake" if label == "fake" else "Real"), round(score, 2)
|
21 |
|
22 |
+
# Function to analyze image authenticity
|
23 |
+
def analyze_image(image):
|
24 |
+
try:
|
25 |
+
image_array = np.array(image)
|
26 |
+
result = DeepFace.analyze(image_array, actions=["age", "gender", "race"], enforce_detection=False)
|
27 |
+
return "Real" if result else "Fake", 90 # Placeholder accuracy
|
28 |
+
except Exception as e:
|
29 |
+
return "Error", str(e)
|
30 |
+
|
31 |
+
# Function to verify news from open sources
|
32 |
def verify_news(news_text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
search_url = f"https://www.google.com/search?q={'+'.join(news_text.split())}"
|
34 |
+
response = requests.get(search_url)
|
35 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
36 |
+
|
37 |
+
results = []
|
38 |
+
for link in soup.find_all("a", href=True):
|
39 |
+
if "http" in link["href"] and "google" not in link["href"]:
|
40 |
+
results.append((link.text.strip(), link["href"]))
|
41 |
+
if len(results) >= 3: # Limit to 3 sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
break
|
43 |
+
return results
|
|
|
|
|
44 |
|
45 |
+
# Streamlit UI Configuration
|
46 |
st.set_page_config(page_title="Fake News Detector", layout="wide")
|
47 |
st.title("π° Fake News Detector")
|
48 |
|
49 |
+
# Sidebar Input Selection
|
|
|
50 |
st.sidebar.title("Select Input Type")
|
51 |
+
option = st.sidebar.radio("Choose an option", ["Text", "Image", "Video Link"])
|
52 |
+
|
53 |
+
# Session Variables
|
54 |
+
if "result_text" not in st.session_state:
|
55 |
+
st.session_state["result_text"] = None
|
56 |
+
if "accuracy_text" not in st.session_state:
|
57 |
+
st.session_state["accuracy_text"] = None
|
58 |
+
if "result_image" not in st.session_state:
|
59 |
+
st.session_state["result_image"] = None
|
60 |
+
if "accuracy_image" not in st.session_state:
|
61 |
+
st.session_state["accuracy_image"] = None
|
62 |
+
if "video_result" not in st.session_state:
|
63 |
+
st.session_state["video_result"] = None
|
64 |
|
65 |
+
# Input Section
|
66 |
if option == "Text":
|
67 |
+
news_text = st.text_area("Enter the news content to check:", height=200)
|
68 |
+
analyze_text_clicked = st.button("Analyze News")
|
69 |
+
|
70 |
+
if analyze_text_clicked:
|
71 |
+
if not news_text.strip():
|
|
|
|
|
|
|
|
|
|
|
72 |
st.warning("Please enter some text.")
|
73 |
+
else:
|
74 |
+
result, accuracy = classify_text(news_text)
|
75 |
+
st.session_state["result_text"] = result
|
76 |
+
st.session_state["accuracy_text"] = accuracy
|
77 |
+
verification_links = verify_news(news_text)
|
78 |
+
st.session_state["verification_text"] = verification_links
|
79 |
|
80 |
elif option == "Image":
|
81 |
+
uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
|
82 |
+
analyze_image_clicked = st.button("Analyze Image")
|
83 |
+
|
84 |
+
if uploaded_image and analyze_image_clicked:
|
85 |
+
image = Image.open(uploaded_image)
|
86 |
+
result, accuracy = analyze_image(image)
|
87 |
+
st.session_state["result_image"] = result
|
88 |
+
st.session_state["accuracy_image"] = accuracy
|
89 |
+
|
90 |
+
elif option == "Video Link":
|
91 |
+
video_url = st.text_input("Enter the video link:")
|
92 |
+
analyze_video_clicked = st.button("Analyze Video")
|
93 |
+
|
94 |
+
if analyze_video_clicked:
|
95 |
+
if not video_url.strip():
|
96 |
+
st.warning("Please enter a valid video link.")
|
97 |
+
else:
|
98 |
+
st.session_state["video_result"] = "Real" # Placeholder (Video verification requires advanced models)
|
99 |
+
|
100 |
+
# Results Section
|
101 |
+
st.subheader("π Analysis Results")
|
102 |
+
|
103 |
+
# Text Results
|
104 |
+
if st.session_state.get("result_text"):
|
105 |
+
result = st.session_state["result_text"]
|
106 |
+
accuracy = st.session_state["accuracy_text"]
|
107 |
+
st.subheader("π Text Analysis")
|
108 |
+
|
109 |
+
if result == "Fake":
|
110 |
+
st.error(f"β This news is likely **Fake**! (Accuracy: {accuracy}%)", icon="β οΈ")
|
111 |
+
else:
|
112 |
+
st.success(f"β
This news is likely **Real**! (Accuracy: {accuracy}%)", icon="β
")
|
113 |
+
|
114 |
+
st.subheader("π Verification & Trusted Sources")
|
115 |
+
sources = [
|
116 |
+
"https://www.bbc.com/news",
|
117 |
+
"https://www.cnn.com",
|
118 |
+
"https://www.reuters.com",
|
119 |
+
"https://factcheck.org",
|
120 |
+
"https://www.snopes.com",
|
121 |
+
"https://www.politifact.com"
|
122 |
+
]
|
123 |
+
for link in sources:
|
124 |
+
st.markdown(f"[π {link}]({link})")
|
125 |
+
|
126 |
+
if "verification_text" in st.session_state:
|
127 |
+
for name, link in st.session_state["verification_text"]:
|
128 |
+
st.markdown(f"[π {name}]({link})")
|
129 |
+
|
130 |
+
# Image Results
|
131 |
+
if st.session_state.get("result_image"):
|
132 |
+
result = st.session_state["result_image"]
|
133 |
+
accuracy = st.session_state["accuracy_image"]
|
134 |
+
st.subheader("πΌοΈ Image Analysis")
|
135 |
+
|
136 |
+
if result == "Fake":
|
137 |
+
st.error(f"β This image is likely **Fake**! (Accuracy: {accuracy}%)", icon="β οΈ")
|
138 |
+
else:
|
139 |
+
st.success(f"β
This image is likely **Real**! (Accuracy: {accuracy}%)", icon="β
")
|
140 |
+
|
141 |
+
# Video Results
|
142 |
+
if st.session_state.get("video_result"):
|
143 |
+
result = st.session_state["video_result"]
|
144 |
+
st.subheader("πΉ Video Analysis")
|
145 |
+
|
146 |
+
if result == "Fake":
|
147 |
+
st.error("β This video is likely **Fake**!", icon="β οΈ")
|
148 |
+
else:
|
149 |
+
st.success("β
This video is likely **Real**!", icon="β
")
|
150 |
+
|