File size: 10,764 Bytes
98f2419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python
# coding=utf-8
"""The Finetuner class simplifies the process of running finetuning process on a language model for a TunableModel instance with given dataset. 
"""

import logging
import os
import sys

import datasets
import transformers

from itertools import chain
from transformers import (
    Trainer,
    default_data_collator,
    set_seed,
)
from transformers.utils import send_example_telemetry

from lmflow.datasets.dataset import Dataset
from lmflow.pipeline.base_tuner import BaseTuner


logger = logging.getLogger(__name__)


class Finetuner(BaseTuner):
    """
    Initializes the `Finetuner` class with given arguments.

    Parameters
    ------------
    model_args : ModelArguments object.
        Contains the arguments required to load the model.
    
    data_args : DatasetArguments object.
        Contains the arguments required to load the dataset.

    finetuner_args : FinetunerArguments object.
        Contains the arguments required to perform finetuning.

    args : Optional.
        Positional arguments.
    
    kwargs : Optional.
        Keyword arguments.

    """
    def __init__(self, model_args, data_args, finetuner_args, *args, **kwargs):
        
        self.model_args = model_args
        self.data_args = data_args
        self.finetuner_args = finetuner_args

        # Sending telemetry. Tracking the example usage helps us better
        # allocate resources to maintain them. The information sent is the one
        # passed as arguments along with your Python/PyTorch versions.
        send_example_telemetry("run_clm", model_args, data_args)

        # Setup logging
        logging.basicConfig(
            format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
            datefmt="%m/%d/%Y %H:%M:%S",
            handlers=[logging.StreamHandler(sys.stdout)],
        )

        log_level = finetuner_args.get_process_log_level()
        logger.setLevel(log_level)
        datasets.utils.logging.set_verbosity(log_level)
        transformers.utils.logging.set_verbosity(log_level)
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()

        # Log on each process the small summary:
        logger.warning(
            f"Process rank: {finetuner_args.local_rank},"
            f" device: {finetuner_args.device},"
            f" n_gpu: {finetuner_args.n_gpu}"
            f"distributed training: {bool(finetuner_args.local_rank != -1)},"
            f" 16-bits training: {finetuner_args.fp16}"
        )
        logger.info(f"Training/evaluation parameters {finetuner_args}")

        # Detecting last checkpoint.
        last_checkpoint = None
        if os.path.isdir(finetuner_args.output_dir) and finetuner_args.do_train and not finetuner_args.overwrite_output_dir:
            last_checkpoint = get_last_checkpoint(finetuner_args.output_dir)
            if last_checkpoint is None and len(os.listdir(finetuner_args.output_dir)) > 0:
                raise ValueError(
                    f"Output directory ({finetuner_args.output_dir}) already"
                    " exists and is not empty. "
                    "Use --overwrite_output_dir to overcome."
                )
            elif last_checkpoint is not None and finetuner_args.resume_from_checkpoint is None:
                logger.info(
                    f"Checkpoint detected, resuming training at"
                    f" {last_checkpoint}. To avoid this behavior, change"
                    " the `--output_dir` or add `--overwrite_output_dir` to"
                    " train from scratch."
                )
        self.last_checkpoint = last_checkpoint

        # Set seed before initializing model.
        set_seed(finetuner_args.seed)


    def group_text(self, tokenized_datasets, model_max_length):
        """
        Groups texts together to form blocks of maximum length `model_max_length` and returns the processed data as
        a dictionary.
        """
        data_args = self.data_args
        finetuner_args = self.finetuner_args

        if data_args.block_size is None:
            block_size = model_max_length
            if block_size > 1024:
                logger.warning(
	    			"The chosen tokenizer supports a `model_max_length` that is"
	    			" longer than the default `block_size` value"
	    			" of 1024. If you would like to use a longer `block_size`"
	    			" up to `tokenizer.model_max_length` you can override this "
	    			" default with `--block_size xxx`."
                )
                block_size = 1024
        else:
            if data_args.block_size > model_max_length:
                logger.warning(
                    f"The block_size passed ({data_args.block_size}) is larger"
	    			f" than the maximum length for the model"
                    f"({model_max_length})."
                    f" Using block_size={model_max_length}."
                )
            block_size = min(data_args.block_size, model_max_length)

        # Main data processing function that will concatenate all texts from
        # our dataset and generate chunks of block_size.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model
            # supported it instead of this drop, you can customize this part to
            # your needs.
            total_length = (total_length // block_size) * block_size
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts
        # together, so group_texts throws away a remainder for each of those
        # groups of 1,000 texts. You can adjust that batch_size here but a
        # higher value might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation
        # of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
        with finetuner_args.main_process_first(desc="grouping texts together"):
            group_batch_size = 1000
            if data_args.disable_group_texts:
                group_batch_size = 1
            if not data_args.streaming:
                lm_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    batch_size=group_batch_size,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc=f"Grouping texts in chunks of {block_size}",
                )
            else:
                lm_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    batch_size=group_batch_size,
                )

        return lm_datasets


    def tune(self, model, dataset):
        """
        Perform tuning for a model

        Parameters
        ------------
        model : TunableModel object.
            TunableModel to perform tuning.
        
        dataset:
            dataset to train model.

        """   
        model_args = self.model_args
        data_args = self.data_args
        finetuner_args = self.finetuner_args

        # Tokenization and text grouping must be done in the main process
        with finetuner_args.main_process_first(desc="dataset map tokenization"):
            tokenized_dataset = model.tokenize(dataset)
            lm_dataset = self.group_text(
                tokenized_dataset,
                model_max_length=model.get_max_length(),
            )

        train_dataset = lm_dataset.get_backend_dataset()

        if finetuner_args.do_train:
            if data_args.max_train_samples is not None:
                max_train_samples = min(len(train_dataset), data_args.max_train_samples)
                train_dataset = train_dataset.select(range(max_train_samples))

        # Initialize our Trainer
        training_args = finetuner_args
        trainer = Trainer(
            model=model.get_backend_model(),
            args=training_args,
            train_dataset=train_dataset if training_args.do_train else None,
            eval_dataset=None,
            tokenizer=model.get_tokenizer(),
            # Data collator will default to DataCollatorWithPadding, so we change it.
            data_collator=default_data_collator,
            compute_metrics=None,
            preprocess_logits_for_metrics=None,
        )

        # Training
        if training_args.do_train:
            checkpoint = None
            last_checkpoint = self.last_checkpoint
            if training_args.resume_from_checkpoint is not None:
                checkpoint = training_args.resume_from_checkpoint
            elif last_checkpoint is not None:
                checkpoint = last_checkpoint
            train_result = trainer.train(resume_from_checkpoint=checkpoint)

            if not model_args.use_lora:
                trainer.save_model()  # Saves the tokenizer too for easy upload
            else:
                if model_args.save_aggregated_lora:
                    model.merge_lora_weights()
                model.save(finetuner_args.output_dir,model_args.save_aggregated_lora)

            metrics = train_result.metrics

            max_train_samples = (
                data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
            )
            metrics["train_samples"] = min(max_train_samples, len(train_dataset))

            trainer.log_metrics("train", metrics)
            trainer.save_metrics("train", metrics)
            trainer.save_state()

        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        if training_args.push_to_hub:
            trainer.push_to_hub(**kwargs)
        else:
            trainer.create_model_card(**kwargs)

        return model