File size: 17,132 Bytes
98f2419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#!/usr/bin/env python
# coding=utf-8
"""
The Aligner class simplifies the process of running alignment.
"""

import logging
import numpy as np
import os
import sys
import time
from itertools import chain

import torch
import torch.distributed as dist
import transformers
from datasets import (
    set_caching_enabled,
    Dataset,
    DatasetDict,
)
from transformers import (
    default_data_collator,
    pipeline,
    set_seed,
)
from transformers.testing_utils import CaptureLogger

from lmflow.args import DatasetArguments
from lmflow.datasets.dataset import Dataset as LMFlowDataset
from lmflow.pipeline.base_aligner import BaseAligner
from lmflow.pipeline.utils.raft_trainer import RaftTrainer

logger = logging.getLogger(__name__)


class RaftAligner(BaseAligner):
    """
    Initializes the `RaftAligner` class with given arguments.

    Parameters
    ------------
    model_args : ModelArguments object.
        Contains the arguments required to load the model.
    
    data_args : DatasetArguments object.
        Contains the arguments required to load the dataset.

    raft_aligner_args : RaftAlignerArguments object.
        Contains the arguments required to perform alignment.

    args : Optional.
        Positional arguments.
    
    kwargs : Optional.
        Keyword arguments.

    """
    def __init__(self, model_args, data_args, aligner_args, *args, **kwargs):
        self.model_args = model_args
        self.data_args = data_args
        self.aligner_args = aligner_args

        logging.basicConfig(
            format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
            datefmt="%m/%d/%Y %H:%M:%S",
            handlers=[logging.StreamHandler(sys.stdout)],
        )

        logger.setLevel(logging.INFO)

        output_reward_path = aligner_args.output_reward_path
        if output_reward_path is not None:
            os.makedirs(os.path.dirname(output_reward_path), exist_ok=True)
            # Deletes a maybe-exist file
            try:
                os.remove(output_reward_path)
            except OSError:
                pass


    def _initialize_trainer(self, model, tokenizer, training_args):
        """
        This function takes the model and tokenizer as the input and initialize the trainer.
        """
        trainer = RaftTrainer(
            model=model,
            args=training_args,
            train_dataset=Dataset.from_dict({"text": [ " " ] }),
            eval_dataset=Dataset.from_dict({}),
            tokenizer=tokenizer,
            data_collator=default_data_collator,
            compute_metrics=None,
            preprocess_logits_for_metrics=None,
        )
        return trainer


    def _load_dataset(
        self,
        selected_dataset,
        model,
        tokenizer,
        model_args,
        data_args,
        training_args,
    ):
        '''
        This function prepares the dataset for every iteration.
        '''
        raw_datasets = selected_dataset

        if training_args.do_train:
            column_names = list(raw_datasets["train"].features)
        else:
            column_names = list(raw_datasets["validation"].features)
        text_column_name = "text" if "text" in column_names else column_names[0]

        # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
        tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

        def tokenize_function(examples):
            with CaptureLogger(tok_logger) as cl:
                output = tokenizer(examples[text_column_name])
            # clm input could be much much longer than block_size
            if "Token indices sequence length is longer than the" in cl.out:
                tok_logger.warning(
                    "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                    " before being passed to the model."
                )
            return output

        with training_args.main_process_first(desc="dataset map tokenization"):
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=column_names,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on dataset",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=column_names,
                )

        if data_args.block_size is None:
            block_size = tokenizer.model_max_length
            if block_size > 1024:
                logger.warning(
                    "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                    " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                    " override this default with `--block_size xxx`."
                )
                block_size = 512
        else:
            if data_args.block_size > tokenizer.model_max_length:
                logger.warning(
                    f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                    f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
                )
            block_size = min(data_args.block_size, tokenizer.model_max_length)

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
            if total_length >= block_size:
                total_length = (total_length // block_size) * block_size
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
                for k, t in concatenated_examples.items()
            }
            result["labels"] = result["input_ids"].copy()
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
        # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
        # to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

        with training_args.main_process_first(desc="grouping texts together"):
            group_batch_size = 1000
            if data_args.disable_group_texts:
                group_batch_size = 1
            if not data_args.streaming:
                lm_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    batch_size=group_batch_size,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc=f"Grouping texts in chunks of {block_size}",
                )
            else:
                lm_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    batch_size=group_batch_size,
                )
    
        if training_args.do_train:
            if "train" not in tokenized_datasets:
                raise ValueError("--do_train requires a train dataset")
            train_dataset = lm_datasets["train"]
            if data_args.max_train_samples is not None:
                max_train_samples = min(len(train_dataset), data_args.max_train_samples)
                train_dataset = train_dataset.select(range(max_train_samples))

        return train_dataset


    def _load_input_dataset(self, dataset, tokenizer):
        """
        Load input dataset (i.e. prompt/question dataset) for training.

        Args:
            dataset: A Dataset object.
                The dataset to be loaded.

        Returns:
            dataloader (`torch.utils.data.DataLoader`):
                The dataloader for the dataset.
        """
        ds = dataset.get_backend_dataset()

        def tokenize(sample):
            input_size = 16
            review_encode = tokenizer.encode(sample["text"])
            sample["input_ids"] = review_encode[:input_size]
            sample['input'] = tokenizer.decode(sample["input_ids"])
            return sample

        ds = ds.map(tokenize, batched=False)
        ds.set_format(type='torch')

        return ds


    def _get_batch_dataset_top(
        self,
        model,
        batch_input,
        alpha=0.2,
        iter_id=0,
        local_rank=0,
        output_min_length=16,
        output_max_length=48,
        infer_batch_size=8,
        generation_kwargs={},
        tokenizer=None,
        training_args=None,
        reward_model=None,
        output_reward_path=None,
    ):
        """
        :param batch_input: input prompts
        """
        # we will get the batch dataset via Dataset.from_dict
        start_time = time.time()
        output_data = []
        query_tensors = batch_input['input_ids']
        querys = batch_input['input']
        data_size = len(querys)
        cnt = 0
        reward_eva = []
        reward_train = []
        out_put_dataset_eval = {}
        data_eval = []
        input_texts = []
        responses = []
        for i, query_tensor in enumerate(query_tensors):
            query = querys[i]
            input_texts.append(query)
            if (i + 1) % infer_batch_size == 0:
                gen_len = np.random.randint(output_min_length, output_max_length)
                generation_kwargs["max_new_tokens"] = gen_len
                inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(training_args.device)
                with torch.no_grad():
                    outputs = model.generate(**inputs, **generation_kwargs)
                generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
                generated_texts = [
                    generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
                ]
                texts_for_rewards = [q + r for q, r in zip(input_texts, generated_texts)]

                texts_for_reward_dataset = LMFlowDataset.create_from_dict({
                    "type": "text_only",
                    "instances": [
                        { "text": text } for text in texts_for_rewards
                    ],
                })

                reward_dataset = reward_model.inference(texts_for_reward_dataset)
                rewards = [ sample["value"] for sample in reward_dataset.to_dict()["instances"] ]

                reward_eva.extend(rewards)
                responses.extend(generated_texts)
                input_texts = []

        data = []
        idx = np.argsort(reward_eva)[::-1][:int(data_size * alpha)]
        for j in range(len(reward_eva)):
            sample = {}
            sample["input"] = querys[j]
            sample["output"] = [responses[j]]
            data.append(sample)
        output_data = [data[j] for j in idx]
        logger.info(f"collected data of {len(output_data)}")

        world_size = int(os.getenv("WORLD_SIZE", "1"))
        all_process_list =[{}] * world_size
        dist.all_gather_object(all_process_list, output_data)

        gathered_data = []
        for i in range(world_size):
            gathered_data.extend(all_process_list[i])

        reward_train = [reward_eva[j] for j in idx]

        reward_to_send = [np.mean(reward_eva), np.mean(reward_train)]
        all_process_rewards = [{}] * world_size
        dist.all_gather_object(all_process_rewards, reward_to_send)
        logger.info(all_process_rewards)

        if training_args.local_rank == 0 and output_reward_path is not None:
            with open(output_reward_path, mode='a') as fout:
                fout.write('mean reward: ' + str(np.mean([all_process_rewards[i][0] for i in range(world_size)])) + 'mean reward in training set: ' + str([all_process_rewards[i][1] for i in range(world_size)]))
                fout.write("\n")

        prompt_structure = "{definition}{input}{output}"
        output_dataset = {
            "text": [ prompt_structure.format(
                          definition="", input=sample["input"], output=sample["output"][0]
                      ) for sample in gathered_data
            ]
        }

        return DatasetDict({ "train": Dataset.from_dict(output_dataset) })


    def align(self, model, dataset, reward_model):
        """
        Perform alignment for a model

        Parameters
        ------------
        model : BaseModel object.
        dataset: Dataset object.
            Input dataset for model to generate outputs. The input and output
                will then be feed into reward model to get the reward for
                alignment.
        reward_model: RegressionModel object.
        """
        tokenizer = model.get_tokenizer()
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.pad_token_id = tokenizer.eos_token_id
        tokenizer.padding_side = "left"

        dataset = self._load_input_dataset(dataset, tokenizer)
        set_caching_enabled(False)

        wrapped_model = model
        model = model.get_backend_model()

        generation_kwargs = {
            "min_length": -1,
            "top_k": 0.0,
            "top_p": 1.0,
            "do_sample": True,
            "pad_token_id": tokenizer.eos_token_id,
            "temperature":0.7
        }

        aligner_args = self.aligner_args
        training_args = aligner_args
        model_args = self.model_args
        data_args = self.data_args

        set_seed(42 + training_args.local_rank)

        ITERATION = aligner_args.num_raft_iteration
        M = aligner_args.raft_batch_size

        alpha = aligner_args.top_reward_percentage
        data_size = len(dataset['input'])
        reward_seq = []
        lr = training_args.learning_rate

        raft_trainer = self._initialize_trainer(model, tokenizer, training_args)
        raft_trainer.train(resume_from_checkpoint=False, is_first_time=True)

        ##############
        for iteration in range(ITERATION):
            set_seed(88 + training_args.local_rank + 4 * (iteration+1))

            batch_input = dataset.select(np.random.randint(low=0, high=data_size, size=M))

            selected_dataset = self._get_batch_dataset_top(
                raft_trainer.tmp_model,
                batch_input,
                alpha,
                iteration,
                training_args.local_rank,
                output_min_length=aligner_args.output_min_length,
                output_max_length=aligner_args.output_max_length,
                infer_batch_size=aligner_args.inference_batch_size_per_device,
                generation_kwargs=generation_kwargs,
                tokenizer=tokenizer,
                training_args=training_args,
                reward_model=reward_model,
                output_reward_path=aligner_args.output_reward_path,
            )
            raft_trainer.train_dataset = self._load_dataset(
                selected_dataset,
                raft_trainer.tmp_model,
                tokenizer,
                model_args,
                data_args,
                training_args,
            )

            logger.info(f"iter {iteration}")
            start_time = time.time()
            train_result = raft_trainer.train(resume_from_checkpoint=False)
            end_time = time.time()
            logger.info("It takes %.2f s to train one stage", end_time - start_time)

        self._get_batch_dataset_top(
            raft_trainer.tmp_model,
            batch_input, alpha,
            iteration,
            training_args.local_rank,
            output_min_length=aligner_args.output_min_length,
            output_max_length=aligner_args.output_max_length,
            infer_batch_size=aligner_args.inference_batch_size_per_device,
            generation_kwargs=generation_kwargs,
            tokenizer=tokenizer,
            training_args=training_args,
            reward_model=reward_model,
            output_reward_path=aligner_args.output_reward_path,
        )

        if aligner_args.output_dir is not None:
            wrapped_model.save(aligner_args.output_dir)

        return wrapped_model