File size: 17,132 Bytes
98f2419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
#!/usr/bin/env python
# coding=utf-8
"""
The Aligner class simplifies the process of running alignment.
"""
import logging
import numpy as np
import os
import sys
import time
from itertools import chain
import torch
import torch.distributed as dist
import transformers
from datasets import (
set_caching_enabled,
Dataset,
DatasetDict,
)
from transformers import (
default_data_collator,
pipeline,
set_seed,
)
from transformers.testing_utils import CaptureLogger
from lmflow.args import DatasetArguments
from lmflow.datasets.dataset import Dataset as LMFlowDataset
from lmflow.pipeline.base_aligner import BaseAligner
from lmflow.pipeline.utils.raft_trainer import RaftTrainer
logger = logging.getLogger(__name__)
class RaftAligner(BaseAligner):
"""
Initializes the `RaftAligner` class with given arguments.
Parameters
------------
model_args : ModelArguments object.
Contains the arguments required to load the model.
data_args : DatasetArguments object.
Contains the arguments required to load the dataset.
raft_aligner_args : RaftAlignerArguments object.
Contains the arguments required to perform alignment.
args : Optional.
Positional arguments.
kwargs : Optional.
Keyword arguments.
"""
def __init__(self, model_args, data_args, aligner_args, *args, **kwargs):
self.model_args = model_args
self.data_args = data_args
self.aligner_args = aligner_args
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO)
output_reward_path = aligner_args.output_reward_path
if output_reward_path is not None:
os.makedirs(os.path.dirname(output_reward_path), exist_ok=True)
# Deletes a maybe-exist file
try:
os.remove(output_reward_path)
except OSError:
pass
def _initialize_trainer(self, model, tokenizer, training_args):
"""
This function takes the model and tokenizer as the input and initialize the trainer.
"""
trainer = RaftTrainer(
model=model,
args=training_args,
train_dataset=Dataset.from_dict({"text": [ " " ] }),
eval_dataset=Dataset.from_dict({}),
tokenizer=tokenizer,
data_collator=default_data_collator,
compute_metrics=None,
preprocess_logits_for_metrics=None,
)
return trainer
def _load_dataset(
self,
selected_dataset,
model,
tokenizer,
model_args,
data_args,
training_args,
):
'''
This function prepares the dataset for every iteration.
'''
raw_datasets = selected_dataset
if training_args.do_train:
column_names = list(raw_datasets["train"].features)
else:
column_names = list(raw_datasets["validation"].features)
text_column_name = "text" if "text" in column_names else column_names[0]
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
output = tokenizer(examples[text_column_name])
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
" before being passed to the model."
)
return output
with training_args.main_process_first(desc="dataset map tokenization"):
if not data_args.streaming:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
else:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
remove_columns=column_names,
)
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`."
)
block_size = 512
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
with training_args.main_process_first(desc="grouping texts together"):
group_batch_size = 1000
if data_args.disable_group_texts:
group_batch_size = 1
if not data_args.streaming:
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
batch_size=group_batch_size,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
else:
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
batch_size=group_batch_size,
)
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = lm_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
return train_dataset
def _load_input_dataset(self, dataset, tokenizer):
"""
Load input dataset (i.e. prompt/question dataset) for training.
Args:
dataset: A Dataset object.
The dataset to be loaded.
Returns:
dataloader (`torch.utils.data.DataLoader`):
The dataloader for the dataset.
"""
ds = dataset.get_backend_dataset()
def tokenize(sample):
input_size = 16
review_encode = tokenizer.encode(sample["text"])
sample["input_ids"] = review_encode[:input_size]
sample['input'] = tokenizer.decode(sample["input_ids"])
return sample
ds = ds.map(tokenize, batched=False)
ds.set_format(type='torch')
return ds
def _get_batch_dataset_top(
self,
model,
batch_input,
alpha=0.2,
iter_id=0,
local_rank=0,
output_min_length=16,
output_max_length=48,
infer_batch_size=8,
generation_kwargs={},
tokenizer=None,
training_args=None,
reward_model=None,
output_reward_path=None,
):
"""
:param batch_input: input prompts
"""
# we will get the batch dataset via Dataset.from_dict
start_time = time.time()
output_data = []
query_tensors = batch_input['input_ids']
querys = batch_input['input']
data_size = len(querys)
cnt = 0
reward_eva = []
reward_train = []
out_put_dataset_eval = {}
data_eval = []
input_texts = []
responses = []
for i, query_tensor in enumerate(query_tensors):
query = querys[i]
input_texts.append(query)
if (i + 1) % infer_batch_size == 0:
gen_len = np.random.randint(output_min_length, output_max_length)
generation_kwargs["max_new_tokens"] = gen_len
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(training_args.device)
with torch.no_grad():
outputs = model.generate(**inputs, **generation_kwargs)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_texts = [
generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
]
texts_for_rewards = [q + r for q, r in zip(input_texts, generated_texts)]
texts_for_reward_dataset = LMFlowDataset.create_from_dict({
"type": "text_only",
"instances": [
{ "text": text } for text in texts_for_rewards
],
})
reward_dataset = reward_model.inference(texts_for_reward_dataset)
rewards = [ sample["value"] for sample in reward_dataset.to_dict()["instances"] ]
reward_eva.extend(rewards)
responses.extend(generated_texts)
input_texts = []
data = []
idx = np.argsort(reward_eva)[::-1][:int(data_size * alpha)]
for j in range(len(reward_eva)):
sample = {}
sample["input"] = querys[j]
sample["output"] = [responses[j]]
data.append(sample)
output_data = [data[j] for j in idx]
logger.info(f"collected data of {len(output_data)}")
world_size = int(os.getenv("WORLD_SIZE", "1"))
all_process_list =[{}] * world_size
dist.all_gather_object(all_process_list, output_data)
gathered_data = []
for i in range(world_size):
gathered_data.extend(all_process_list[i])
reward_train = [reward_eva[j] for j in idx]
reward_to_send = [np.mean(reward_eva), np.mean(reward_train)]
all_process_rewards = [{}] * world_size
dist.all_gather_object(all_process_rewards, reward_to_send)
logger.info(all_process_rewards)
if training_args.local_rank == 0 and output_reward_path is not None:
with open(output_reward_path, mode='a') as fout:
fout.write('mean reward: ' + str(np.mean([all_process_rewards[i][0] for i in range(world_size)])) + 'mean reward in training set: ' + str([all_process_rewards[i][1] for i in range(world_size)]))
fout.write("\n")
prompt_structure = "{definition}{input}{output}"
output_dataset = {
"text": [ prompt_structure.format(
definition="", input=sample["input"], output=sample["output"][0]
) for sample in gathered_data
]
}
return DatasetDict({ "train": Dataset.from_dict(output_dataset) })
def align(self, model, dataset, reward_model):
"""
Perform alignment for a model
Parameters
------------
model : BaseModel object.
dataset: Dataset object.
Input dataset for model to generate outputs. The input and output
will then be feed into reward model to get the reward for
alignment.
reward_model: RegressionModel object.
"""
tokenizer = model.get_tokenizer()
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
dataset = self._load_input_dataset(dataset, tokenizer)
set_caching_enabled(False)
wrapped_model = model
model = model.get_backend_model()
generation_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"temperature":0.7
}
aligner_args = self.aligner_args
training_args = aligner_args
model_args = self.model_args
data_args = self.data_args
set_seed(42 + training_args.local_rank)
ITERATION = aligner_args.num_raft_iteration
M = aligner_args.raft_batch_size
alpha = aligner_args.top_reward_percentage
data_size = len(dataset['input'])
reward_seq = []
lr = training_args.learning_rate
raft_trainer = self._initialize_trainer(model, tokenizer, training_args)
raft_trainer.train(resume_from_checkpoint=False, is_first_time=True)
##############
for iteration in range(ITERATION):
set_seed(88 + training_args.local_rank + 4 * (iteration+1))
batch_input = dataset.select(np.random.randint(low=0, high=data_size, size=M))
selected_dataset = self._get_batch_dataset_top(
raft_trainer.tmp_model,
batch_input,
alpha,
iteration,
training_args.local_rank,
output_min_length=aligner_args.output_min_length,
output_max_length=aligner_args.output_max_length,
infer_batch_size=aligner_args.inference_batch_size_per_device,
generation_kwargs=generation_kwargs,
tokenizer=tokenizer,
training_args=training_args,
reward_model=reward_model,
output_reward_path=aligner_args.output_reward_path,
)
raft_trainer.train_dataset = self._load_dataset(
selected_dataset,
raft_trainer.tmp_model,
tokenizer,
model_args,
data_args,
training_args,
)
logger.info(f"iter {iteration}")
start_time = time.time()
train_result = raft_trainer.train(resume_from_checkpoint=False)
end_time = time.time()
logger.info("It takes %.2f s to train one stage", end_time - start_time)
self._get_batch_dataset_top(
raft_trainer.tmp_model,
batch_input, alpha,
iteration,
training_args.local_rank,
output_min_length=aligner_args.output_min_length,
output_max_length=aligner_args.output_max_length,
infer_batch_size=aligner_args.inference_batch_size_per_device,
generation_kwargs=generation_kwargs,
tokenizer=tokenizer,
training_args=training_args,
reward_model=reward_model,
output_reward_path=aligner_args.output_reward_path,
)
if aligner_args.output_dir is not None:
wrapped_model.save(aligner_args.output_dir)
return wrapped_model
|