|
"""The Evaluator class simplifies the process of running evaluation on a language model provided by a HFDecoderModel instance imported from the lmflow package. The class constructor takes three dictionaries as arguments: model_args containing arguments related to the language model, data_args containing arguments related to the data used for evaluation, and evaluator_args containing other arguments for the evaluation process. |
|
|
|
The class has two methods: create_dataloader() that loads the data from the test file, creates a data loader, and returns it with the size of the data, and evaluate(model) that generates output text given input text. It uses the create_dataloader() method to load the data, iterates over the data in mini-batches, and encodes the input text with the encode() method of the HFDecoderModel class. Then, it generates output text using the evaluate() method of the HFDecoderModel class, decodes the generated output text using the decode() method of the HFDecoderModel class, and writes the output to a file in the output directory. The method also logs some information to the console and Weights and Biases if the use_wandb argument is True. |
|
""" |
|
import os |
|
|
|
import torch |
|
import wandb |
|
import deepspeed |
|
import sys |
|
import numpy as np |
|
import datetime |
|
import json |
|
|
|
from transformers import AutoConfig |
|
import torch.distributed as dist |
|
|
|
from lmflow.datasets.dataset import Dataset |
|
from lmflow.pipeline.base_pipeline import BasePipeline |
|
from lmflow.models.hf_decoder_model import HFDecoderModel |
|
from lmflow.utils.data_utils import set_random_seed, batchlize, answer_extraction |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
class Evaluator(BasePipeline): |
|
""" |
|
Initializes the `Evaluator` class with given arguments. |
|
|
|
Parameters |
|
------------ |
|
model_args : ModelArguments object. |
|
Contains the arguments required to load the model. |
|
|
|
data_args : DatasetArguments object. |
|
Contains the arguments required to load the dataset. |
|
|
|
evaluator_args : EvaluatorArguments object. |
|
Contains the arguments required to perform evaluation. |
|
|
|
|
|
""" |
|
def __init__(self, model_args, data_args, evaluator_args): |
|
|
|
self.data_args = data_args |
|
self.evaluator_args = evaluator_args |
|
self.model_args = model_args |
|
print("--------Begin Evaluator Arguments----------") |
|
print(f"model_args : {self.model_args}") |
|
print(f"data_args : {self.data_args}") |
|
print(f"evaluator_args : {self.evaluator_args}") |
|
print("--------End Evaluator Arguments----------") |
|
|
|
if(self.evaluator_args.use_wandb == True): |
|
wandb.init(project="lmflow_evaluation") |
|
|
|
set_random_seed(self.evaluator_args.random_seed) |
|
self.local_rank = int(os.getenv("LOCAL_RANK", "0")) |
|
self.world_size = int(os.getenv("WORLD_SIZE", "1")) |
|
torch.cuda.set_device(self.local_rank) |
|
deepspeed.init_distributed() |
|
|
|
self.config = AutoConfig.from_pretrained(model_args.model_name_or_path) |
|
try: |
|
self.model_hidden_size = self.config.hidden_size |
|
except: |
|
print("Error in setting hidden size, use the default size 1024") |
|
self.model_hidden_size = 1024 |
|
|
|
print(f"model_hidden_size = {self.model_hidden_size}") |
|
|
|
train_batch_size = 1 * self.world_size |
|
self.evaluator_args.minibatch_size = train_batch_size |
|
self.block_size = evaluator_args.evaluate_block_size |
|
|
|
|
|
|
|
def create_dataloader(self, dataset: Dataset): |
|
data_dict = dataset.to_dict() |
|
inputs = [ instance["input"] for instance in data_dict["instances"] ] |
|
outputs = [ instance["output"] for instance in data_dict["instances"] ] |
|
dataset_size = len(outputs) |
|
dataset_buf = [] |
|
for idx in range(dataset_size): |
|
dataset_buf.append({ |
|
"input": inputs[idx], |
|
"output": outputs[idx], |
|
"input_idx": idx |
|
}) |
|
|
|
dataloader = batchlize( |
|
dataset_buf, |
|
self.evaluator_args.minibatch_size, |
|
self.evaluator_args.random_shuffle |
|
) |
|
print(f"Successfully create dataloader with size {len(dataloader)}.") |
|
return dataloader, dataset_size |
|
|
|
|
|
|
|
|
|
def _match(self, predicted_answer, groundtruth, answer_type=None): |
|
case_insensitive_types = [ |
|
"strategyqa", |
|
"coin_flip", |
|
"pubmedqa", |
|
"binary_choice", |
|
"medmcqa", |
|
"usmle", |
|
] |
|
if answer_type in case_insensitive_types: |
|
return predicted_answer.lower() == groundtruth.lower() |
|
else: |
|
return predicted_answer == groundtruth |
|
return False |
|
|
|
|
|
def evaluate(self, model, dataset: Dataset, metric = "accuracy"): |
|
""" |
|
Perform Evaluation for a model |
|
|
|
Parameters |
|
------------ |
|
model : TunableModel object. |
|
TunableModel to perform inference |
|
|
|
dataset : Dataset object. |
|
|
|
|
|
""" |
|
if metric in ["acc", "accuracy"]: |
|
dataloader, data_size = self.create_dataloader(dataset) |
|
|
|
if not dist.is_initialized() or dist.get_rank() == 0: |
|
if not os.path.exists(self.evaluator_args.output_dir): |
|
os.makedirs(self.evaluator_args.output_dir) |
|
output_writer = open(f"{self.evaluator_args.output_dir}/evaluation.json", "w") |
|
|
|
acc_list = [] |
|
total = 0 |
|
|
|
|
|
for batch_index, batch in enumerate(dataloader): |
|
if batch_index * self.world_size >= self.data_args.max_eval_samples: |
|
break |
|
if self.local_rank >= len(batch): |
|
current_batch = batch[0] |
|
else: |
|
|
|
current_batch = batch[self.local_rank] |
|
|
|
prompt_structure = self.evaluator_args.prompt_structure |
|
input = prompt_structure.format(input=current_batch['input']) |
|
output = current_batch['output'] |
|
input_idx = current_batch['input_idx'] |
|
|
|
inputs = model.encode(input, return_tensors="pt").to(device=self.local_rank) |
|
|
|
|
|
|
|
|
|
outputs = model.inference(inputs, max_new_tokens=100, temperature=0.0) |
|
text_out = model.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
prompt_length = len(model.decode(inputs[0], skip_special_tokens=True,)) |
|
text_out = text_out[prompt_length:] |
|
answer_type = self.evaluator_args.answer_type |
|
pred_answer = answer_extraction( |
|
text_out, |
|
answer_type=answer_type, |
|
) |
|
print(f"batch_index{batch_index} rank{self.local_rank}:\n question={input}\n prediction={text_out}\n") |
|
print(f"predicted answer: {pred_answer} \n") |
|
print(f"groundtruth answer: {output} \n") |
|
|
|
if self.local_rank >= len(batch): |
|
correct_ = 0 |
|
total_ = 0 |
|
else: |
|
correct_ = 0 |
|
total_ = 1 |
|
if self._match(pred_answer, output, answer_type): |
|
correct_ = 1 |
|
|
|
|
|
all_process = torch.tensor([correct_, total_], dtype=torch.float32, device=self.local_rank) |
|
dist.all_reduce(all_process, dist.ReduceOp.SUM, async_op=False) |
|
correct_, total_ = all_process.tolist() |
|
avg = correct_ / total_ |
|
acc_list.append(avg) |
|
total += total_ |
|
|
|
|
|
output_dict = {"question": input, |
|
"prediction": text_out, |
|
"pred_answer": pred_answer, |
|
"answer": output} |
|
all_process_list = [{}] * self.world_size |
|
|
|
dist.gather_object(output_dict, all_process_list if dist.get_rank() == 0 else None, dst=0) |
|
if not dist.is_initialized() or dist.get_rank() == 0: |
|
current_accuracy = np.mean(acc_list) |
|
print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "{}/ {} has been finished, current accuracy = {}".format(int(total), data_size, current_accuracy)) |
|
|
|
if(self.evaluator_args.use_wandb == True): |
|
wandb.log({"Accuracy": current_accuracy}) |
|
|
|
for index, output in enumerate(all_process_list): |
|
output_json = json.dumps(output) |
|
output_writer.write(output_json + '\n') |
|
|
|
if not dist.is_initialized() or dist.get_rank() == 0: |
|
current_accuracy = np.mean(acc_list) |
|
print("Final accuracy = ", current_accuracy) |
|
output_writer.close() |
|
elif metric in ["ppl", "perplexity"]: |
|
ppl = self._evaluate_ppl(model, dataset) |
|
print(f"Evaluating final ppl: {ppl}") |
|
elif metric in ["nll", "neg_log_likelihood"]: |
|
neg_log_likelihood = self._evaluate_neg_log_likelihood(model, dataset) |
|
print(f"Evaluating final negative log likelihood: {neg_log_likelihood}") |
|
else: |
|
raise NotImplementedError(f"{metric} is not implemented or not match with our defined metrics") |
|
|
|
|
|
def _evaluate_ppl(self, model, dataset: Dataset): |
|
data_dict = dataset.to_dict() |
|
if data_dict['type'] == 'text2text': |
|
raise NotImplementedError("ppl evaluation is currently not supported for text2text dataset, please use text_only dataset.") |
|
texts = [ instance["text"] for instance in data_dict["instances"] ] |
|
encodings = model.get_tokenizer()("\n\n".join(texts), return_tensors="pt") |
|
|
|
try: |
|
max_length = min(model.get_backend_model().config.n_positions, model.get_max_length()) |
|
except: |
|
max_length = min(1024, model.get_max_length()) |
|
|
|
print(f"The maximum sequence length : {max_length}") |
|
seq_len = encodings.input_ids.size(1) |
|
|
|
nlls = [] |
|
prev_end_loc = 0 |
|
for begin_loc in range(0, seq_len, self.block_size): |
|
end_loc = min(begin_loc + max_length, seq_len) |
|
trg_len = end_loc - prev_end_loc |
|
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device=self.local_rank) |
|
target_ids = input_ids.clone() |
|
target_ids[:, :-trg_len] = -100 |
|
|
|
with torch.no_grad(): |
|
outputs = model.get_backend_model()(input_ids, labels=target_ids) |
|
|
|
|
|
|
|
neg_log_likelihood = outputs.loss |
|
|
|
nlls.append(neg_log_likelihood) |
|
prev_end_loc = end_loc |
|
print(f"Evaluating PPL: {int(begin_loc/self.block_size) + 1} / {int(seq_len/self.block_size)} Complete, current ppl : {torch.exp(torch.stack(nlls).mean())}") |
|
if end_loc == seq_len: |
|
break |
|
ppl = torch.exp(torch.stack(nlls).mean()) |
|
return ppl |
|
|
|
|
|
def _evaluate_neg_log_likelihood(self, model, dataset: Dataset): |
|
""" |
|
Evaluates negative log likelihood of the model over a dataset. |
|
|
|
NLL = -1/N sum_{i=1}^N sum_{j=1}^|w_i| ln(p(w_{i,j}|context_window)), |
|
|
|
where N is the number of data samples, w_{i,j} is the j-th token in |
|
i-th sample. Here "context_window" = p(w_{i,start}, w_{i,start+1}, ..., |
|
p_{i,j-1} with start = max(0, j - window_length + 1). "window_length" |
|
is normally the maximum length accepted by the model. |
|
|
|
Returns: |
|
A float which represents the negative log likelihood. |
|
""" |
|
data_dict = dataset.to_dict() |
|
|
|
|
|
if dataset.get_type() == "text2text": |
|
prompt = self.evaluator_args.prompt_structure |
|
data_dict["instances"] = [ |
|
{ |
|
"input": prompt.format(input=instance["input"]), |
|
"output": instance["output"] |
|
} |
|
for instance in data_dict["instances"] |
|
] |
|
|
|
dataset = dataset.from_dict(data_dict) |
|
tokenized_dataset = model.tokenize(dataset, add_special_tokens=False) |
|
tokenized_dataset = tokenized_dataset.get_backend_dataset() |
|
encoding_list = [ |
|
{ |
|
"input_ids": torch.tensor([input_ids]), |
|
"labels": torch.tensor([labels]), |
|
} |
|
for input_ids, labels in zip(tokenized_dataset["input_ids"], |
|
tokenized_dataset["labels"]) |
|
] |
|
|
|
|
|
try: |
|
max_length = min(model.get_backend_model().config.n_positions, |
|
model.get_max_length()) |
|
except: |
|
max_length = min(1024, model.get_max_length()) |
|
|
|
nlls = [] |
|
full_nlls = [] |
|
num_samples = len(encoding_list) |
|
for sample_idx, encodings in enumerate(encoding_list): |
|
seq_len = encodings["input_ids"].size(1) |
|
|
|
prev_end_loc = 0 |
|
for begin_loc in range(0, seq_len, self.block_size): |
|
end_loc = min(begin_loc + max_length, seq_len) |
|
|
|
|
|
trg_len = end_loc - prev_end_loc |
|
input_ids = encodings["input_ids"][:, begin_loc:end_loc] |
|
input_ids = input_ids.to(device=self.local_rank) |
|
|
|
labels = encodings["labels"][:, begin_loc:end_loc] |
|
target_ids = labels.clone() |
|
full_target_ids = input_ids.clone() |
|
|
|
def get_nll(label_ids, nll_list): |
|
label_ids[:, :-trg_len] = -100 |
|
label_ids = label_ids.to(device=self.local_rank) |
|
|
|
|
|
num_valid_labels = torch.count_nonzero(label_ids >= 0) |
|
if label_ids[0, 0] != -100: |
|
num_valid_labels -= 1 |
|
|
|
if not torch.all(label_ids == -100): |
|
with torch.no_grad(): |
|
outputs = model.get_backend_model()( |
|
input_ids, labels=label_ids |
|
) |
|
|
|
|
|
|
|
|
|
neg_log_likelihood = outputs.loss * num_valid_labels |
|
else: |
|
neg_log_likelihood = torch.zeros([]).to( |
|
device=self.local_rank |
|
) |
|
|
|
nll_list.append(neg_log_likelihood) |
|
|
|
get_nll(target_ids, nlls) |
|
get_nll(full_target_ids, full_nlls) |
|
|
|
current_output_nll = torch.stack(nlls).sum() / (sample_idx + 1) |
|
current_full_nll = torch.stack(full_nlls).sum() / (sample_idx + 1) |
|
|
|
prev_end_loc = end_loc |
|
if dataset.get_type() == "text_only": |
|
print( |
|
f"Evaluating negative log likelihood:" |
|
f" {sample_idx + 1} / {num_samples} Complete," |
|
f" current nll: {current_full_nll}" |
|
) |
|
elif dataset.get_type() == "text2text": |
|
print( |
|
f"Evaluating negative log likelihood:" |
|
f" {sample_idx + 1} / {num_samples} Complete," |
|
f" current full nll / input nll / output nll:" |
|
f" {current_full_nll} /" |
|
f" {current_full_nll - current_output_nll} /" |
|
f" {current_output_nll}" |
|
) |
|
else: |
|
raise NotImplementedError( |
|
"f{dataset.get_type()} typed datasets are not supported" |
|
) |
|
|
|
if end_loc == seq_len: |
|
break |
|
|
|
mean_nll = torch.stack(nlls).sum() / num_samples |
|
return mean_nll |
|
|