File size: 32,410 Bytes
9f49eeb 4945824 9f49eeb 4945824 9f49eeb 4945824 9f49eeb 4945824 9f49eeb 4945824 9f49eeb 4945824 9f49eeb 4945824 7dcd96a 4945824 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
import streamlit as st
import pandas as pd
import plotly.express as px
import altair as alt
import folium
from streamlit_plotly_events import plotly_events # added for part3 interactivity
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import st_folium
# To fix the color scheme in crash stats plot (asked ChatGPT for appropriate colors)
severity_colors = {
"No Injury": "#1f77b4",
"Possible Injury": "#aec7e8",
"Non Incapacitating Injury": "#ff7f0e",
"Incapacitating Injury": "#ffbb78",
"Suspected Minor Injury": "#2ca02c",
"Suspected Serious Injury": "#98df8a",
"Fatal": "#d62728",
}
@st.cache_data
def load_and_preprocess_data(file_path):
# Read the data
df = pd.read_csv(file_path)
# Basic preprocessing
df = df.drop(['X', 'Y'], axis=1)
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
# Convert Year to int
df['Year'] = df['Year'].astype(int)
# Fill missing values
numeric = ['Age_Drv1', 'Age_Drv2']
for col in numeric:
df[col].fillna(df[col].median(), inplace=True)
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
for col in categorical:
df[col].fillna('Unknown', inplace=True)
# Remove invalid ages
df = df[
(df['Age_Drv1'] <= 90) &
(df['Age_Drv2'] <= 90) &
(df['Age_Drv1'] >= 16) &
(df['Age_Drv2'] >= 16)
]
# Create age groups
bins = [15, 25, 35, 45, 55, 65, 90]
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
return df
def create_severity_violation_chart(df, age_group=None):
# Apply age group filter if selected
if age_group != 'All Ages':
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
# Combine violations from both drivers
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
violations_1.columns = ['Violation', 'Severity', 'count']
violations_2.columns = ['Violation', 'Severity', 'count']
violations = pd.concat([violations_1, violations_2])
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
# Create visualization
fig = px.bar(
violations,
x='Violation',
y='count',
color='Severity',
title=f'Crash Severity Distribution by Violation Type - {age_group}',
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
height=600,
color_discrete_map=severity_colors, # --> for part 3
)
# fig.update_layout(
# xaxis_tickangle=-45,
# legend_title='Severity Level',
# barmode='stack'
# )
# modified the above code because x-axis labels were partially pruned
fig.update_layout(
xaxis_tickangle=-45,
legend_title='Severity Level',
barmode='stack',
margin=dict(t=50, b=150), # Increase bottom margin to avoid pruning
xaxis=dict(automargin=True)
)
# return fig
return fig, violations
def get_top_violations(df, age_group):
# Calculate total incidents for the age group
if age_group == 'All Ages':
total_incidents = len(df)
# Get violations for all ages
violations = pd.concat([
df['Violation1_Drv1'].value_counts(),
df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
else:
# Filter for specific age group
filtered_df = df[
(df['Age_Group_Drv1'] == age_group) |
(df['Age_Group_Drv2'] == age_group)
]
total_incidents = len(filtered_df)
# Get violations for specific age group
violations = pd.concat([
filtered_df['Violation1_Drv1'].value_counts(),
filtered_df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
# Convert to DataFrame and format
violations_df = violations.reset_index()
violations_df.columns = ['Violation Type', 'Count']
# Sort by Count in descending order
violations_df = violations_df.sort_values('Count', ascending=False)
# Calculate percentage of total incidents
violations_df['Percentage'] = (violations_df['Count'] / total_incidents * 100).round(2)
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
return violations_df.head()
@st.cache_data
def create_interactive_pie_chart(violations, selected_violation, selected_age):
# Filter data based on selected violation
filtered_data = violations[violations['Violation'] == selected_violation]
# Create a pie chart for severity distribution of the selected violation type
fig = px.pie(
filtered_data,
names='Severity',
values='count',
# title=f'Severity Level Distribution for Violation: {selected_violation}',
title=f'Severity Level Distribution for Violation: {selected_violation} - {selected_age}', # dynamically update pie chart's title
height=600,
color_discrete_map=severity_colors
)
return fig
def create_map_bar_chart(df, selected_year):
# Create severity count bar chart
filtered_df = df[df['Year'] == selected_year]
severity_count = filtered_df['Injuryseverity'].value_counts().reset_index()
severity_count.columns = ['Injuryseverity', 'Count']
fig = px.bar(
severity_count,
x='Injuryseverity',
y='Count',
title="Accidents by Severity",
labels={'Injuryseverity': 'Severity', 'Count': 'Number of Accidents'} # Adjust height as needed
)
fig.update_traces(marker_color='blue')
fig.update_layout(
clickmode='event+select', # Enable interactivity
xaxis_tickangle=45, # Rotate x-axis labels 45 degrees
margin=dict(t=50, b=150), # Add bottom margin to prevent label cutoff
)
return fig
@st.cache_data
def create_map(df, selected_year, selected_severity=None):
# Filter data by selected year
filtered_df = df[df['Year'] == selected_year]
# Filter further by selected severity if provided
if selected_severity:
filtered_df = filtered_df[filtered_df['Injuryseverity'] == selected_severity]
# Remove rows with missing latitude or longitude
filtered_df = filtered_df.dropna(subset=['Latitude', 'Longitude'])
# Create the map
m = folium.Map(
location=[33.4255, -111.9400], # Default location (can be customized)
zoom_start=12,
control_scale=True,
tiles='CartoDB positron'
)
# Add marker cluster
marker_cluster = MarkerCluster(name="Accident Locations").add_to(m)
# Add accident markers
for _, row in filtered_df.iterrows():
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}",
icon=folium.Icon(color='red')
).add_to(marker_cluster)
# Add heatmap
heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist()
HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3, name="Heat Map").add_to(m)
folium.LayerControl().add_to(m)
return m
def create_injuries_fatalities_chart(crash_data, unit_type):
# 5th visualization title
# st.header("5. Total Injuries and Fatalities by Month")
# Filter rows where we have valid data for all necessary columns
crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna()
# Convert "DateTime" to datetime type
crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce')
crash_data['Month'] = crash_data['DateTime'].dt.month_name()
# sort months in order
month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True)
# Dropdown for Unit Type selection
# Dropdown for Unit Type selection
# st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) # previous location of dropdown in sidebar
# unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist())
# unit_type_pairs = set()
# for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
# if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
# pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
# unit_type_pairs.add(pair)
# # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order
# unit_type_pairs = sorted(list(unit_type_pairs))
# unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
# Filter data based on the selected unit type
if unit_type == 'Total':
filtered_data = crash_data
else:
unit_one, unit_two = unit_type.split(' vs ')
filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) |
((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))]
# Group data by month and calculate total injuries and fatalities
monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index()
# Reshape the data for easier plotting
injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'})
injuries['Measure'] = 'Total Injuries'
fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'})
fatalities['Measure'] = 'Total Fatalities'
combined_data = pd.concat([injuries, fatalities])
# Originally tried to use bar chart but switched to line chart for better trend visualization
# alt.Chart(monthly_sum).mark_bar().encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')),
# color=alt.value('blue'),
# tooltip=['Month', 'Totalinjuries']
# ).properties(
# title='Total Injuries and Fatalities by Month',
# width=300,
# height=300
# ) + alt.Chart(monthly_sum).mark_bar().encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')),
# color=alt.value('red'),
# tooltip=['Month', 'Totalfatalities']
# )
# Tried to figure out how to plot a legend using altair
# line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')),
# color=alt.value('blue'),
# tooltip=['Month', 'Totalinjuries']
# ).properties(
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
# width=600,
# height=400
# ) + alt.Chart(monthly_sum).mark_line(point=True).encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')),
# color=alt.value('red'),
# tooltip=['Month', 'Totalfatalities']
# ).configure_legend(
# titleFontSize=14,
# labelFontSize=12,
# titleColor='black',
# labelColor='black'
# )
# Plot line chart
line_chart = alt.Chart(combined_data).mark_line(point=True).encode(
x=alt.X('Month:N', sort=month_order, title='Month'),
y=alt.Y('Value:Q', title='Total Injuries & Fatalities'),
color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])),
tooltip=['Month', 'Measure:N', 'Value:Q']
).properties(
title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
width=600,
height=400
)
# # Combine the charts (trying to make legend)
# combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties(
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
# width=600,
# height=400
# ).configure_legend(
# titleFontSize=14,
# labelFontSize=12,
# titleColor='black',
# labelColor='black'
# )
return line_chart
def create_crash_trend_chart(df, weather=None):
if weather and weather != 'All Conditions':
df = df[df['Weather'] == weather]
# Group data by year and count unique Incident IDs
trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index()
trend_data.columns = ['Year', 'Crash Count']
# Create line graph
fig = px.line(
trend_data,
x='Year',
y='Crash Count',
title=f'Crash Trend Over Time ({weather})',
labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'},
markers=True,
height=600
)
fig.update_traces(line=dict(width=2), marker=dict(size=8))
fig.update_layout(legend_title_text='Trend')
return fig
def create_category_distribution_chart(df, selected_category, selected_year):
# Filter by selected year
if selected_year != 'All Years':
df = df[df['Year'] == int(selected_year)]
# Group by selected category and Injury Severity
grouped_data = df.groupby([selected_category, 'Injuryseverity']).size().reset_index(name='Count')
# Calculate percentages for each category value
total_counts = grouped_data.groupby(selected_category)['Count'].transform('sum')
grouped_data['Percentage'] = (grouped_data['Count'] / total_counts * 100).round(2)
# Create the stacked bar chart using Plotly
fig = px.bar(
grouped_data,
x=selected_category,
y='Count',
color='Injuryseverity',
text='Percentage',
title=f'Distribution of Incidents by {selected_category} ({selected_year})',
labels={'Count': 'Number of Incidents', selected_category: 'Category'},
height=600,
)
# Customize the chart appearance
fig.update_traces(texttemplate='%{text}%', textposition='inside')
fig.update_layout(
barmode='stack',
xaxis_tickangle=-45,
legend_title='Injury Severity',
margin=dict(t=50, b=150, l=50, r=50),
)
return fig
def main():
st.set_page_config(page_title="Terrific Tempe Traffic", layout="wide")
st.markdown("""
<style>
.reportview-container {
font-size: 20px;
}
h1, h2, h3, h4, h5, h6 {
font-size: 150%;
}
p {
font-size: 125%;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
.title {
text-align: center;
padding: 25px;
}
</style>
""", unsafe_allow_html=True)
st.markdown("<div class='title'><h1> Accident Analysis for City of Tempe, Arizona </h1></div>", unsafe_allow_html=True)
st.markdown("""
# Introduction to the Traffic Accident Dataset
This dataset contains detailed information about traffic accidents in the city of **Tempe**. It includes various attributes of the accidents, such as the severity of injuries, the demographics of the drivers involved, the locations of the incidents, and the conditions at the time of the accidents. The dataset covers accidents that occurred over several years, with data on factors like **weather conditions**, **road surface conditions**, the **time of day**, and the type of **violations** (e.g., alcohol or drug use) that may have contributed to the accident.
The data was sourced from **Tempe City's traffic incident reports** and provides a comprehensive view of the factors influencing road safety and accident severity in the city. By analyzing this dataset, we can gain insights into the key contributors to traffic incidents and uncover trends that could help improve traffic safety measures, urban planning, and law enforcement policies in the city.
""")
# Load data
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
if 'Weather' not in df.columns:
df['Weather'] = 'Unknown'
if 'selected_violation' not in st.session_state:
st.session_state['selected_violation'] = None
if "selected_severity" not in st.session_state:
st.session_state["selected_severity"] = None
# Create tabs for different visualizations
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"Crash Trend",
"Violation-Severity Analysis",
"Distribution by Category",
"Crash Injuries/Fatalities",
"Severity-Location Analysis"
])
with tab1:
# Weather condition filter
weather = ['All Conditions'] + sorted(df['Weather'].unique())
selected_weather = st.selectbox('Select Weather Condition:', weather)
trend_col, desc_col = st.columns([7, 3])
with trend_col:
trend_fig = create_crash_trend_chart(df, selected_weather)
trend_fig.update_layout(
height=800,
width=None,
margin=dict(l=50, r=50, t=50, b=50)
)
st.plotly_chart(trend_fig, use_container_width=True)
with desc_col:
st.markdown("""
## **Crash Trend Over Time**
This interactive line chart visualizes the trend of unique traffic crashes over the years, optionally filtered by weather conditions. It highlights how crash frequency changes over time, helping identify trends and potential contributing factors.
**Key Features:**
* **Time Trend Analysis**: Displays the total number of unique crashes for each year, showing long-term patterns.
* **Weather Filter**: Users can filter the data by weather conditions (e.g., "Rainy", "Sunny") to analyze how weather impacts crash trends.
* **Interactive Tooltips**: Hovering over data points reveals the exact crash count for each year, providing detailed insights.
**Color Scheme and Design:**
* **Line and Markers**: A smooth line connects data points, with prominent markers for each year to highlight trends clearly.
* **Dynamic Title**: The chart updates its title to reflect the selected weather condition or "All Conditions" for the overall trend.
**Insights:**
This chart helps uncover:
* Annual fluctuations in crash incidents.
* Correlations between weather conditions and crash frequencies.
* Historical patterns that can guide future safety measures and urban planning decisions
""")
with tab2:
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
selected_age = st.selectbox('Select Age Group:', age_groups)
trend_col, desc_col = st.columns([6, 4])
with trend_col:
# Create and display main chart
fig, violations = create_severity_violation_chart(df, selected_age)
# Display the chart with selection events enabled
chart_event = st.plotly_chart(
fig,
use_container_width=True,
key="violation_chart",
on_select="rerun"
)
# Check if there's a selection event
if chart_event and chart_event.selection and chart_event.selection.points:
# Get the selected violation type
selected_violation = chart_event.selection.points[0]['x']
# Create and display pie chart for selected violation
pie_chart = create_interactive_pie_chart(violations, selected_violation, selected_age)
st.plotly_chart(pie_chart, use_container_width=True)
# # Display statistics
# if selected_age == 'All Ages':
# total_incidents = len(df)
# else:
# total_incidents = len(df[
# (df['Age_Group_Drv1'] == selected_age) |
# (df['Age_Group_Drv2'] == selected_age)
# ])
with desc_col:
st.markdown("""
# Severity of Violations Across Age Groups
This section provides an interactive visualization of **crash severities** linked to specific violation types, segmented by driver age groups. It enables a comprehensive analysis of how **age influences crash severity and violation trends**. The visualization is linked to an **interactive pie chart** that updates when a specific bar is selected, displaying the detailed distribution of the selected violation type based on the selected age group.
---
## **Key Features**
### 1. **Age Group Analysis**
- Select specific age groups (e.g., "16-25", "65+") or analyze all ages to explore correlations between:
- Age
- Violation type
- Crash severity
- Understand how different age groups are involved in various types of violations.
### 2. **Violation Breakdown**
- Examine the most frequent violations contributing to traffic accidents for each age group.
- View detailed statistics showing the distribution of violation types.
### 3. **Understanding Severity Level**
- Identify the proportion of severity levels for a specific violation type based on different age groups.
- Investigate detailed severity patterns for each violation type across age groups.
---
## **Insights**
- **Identifies High-Risk Behaviors:**
- Highlights risky behaviors such as reckless driving in younger drivers or impaired driving in older groups.
- **Highlights Severity Associations:**
- Shows which violations are associated with more severe outcomes, aiding targeted safety interventions and public awareness campaigns.
- **Supports Data-Driven Decision Making:**
- Provides insights for designing **age-specific traffic safety programs**.
---
""")
with tab3:
# Dropdown for category selection
categories = [
'Collisionmanner',
'Lightcondition',
'Weather',
'SurfaceCondition',
'AlcoholUse_Drv1',
'Gender_Drv1',
]
selected_category = st.selectbox("Select Category:", categories)
# Dropdown for year selection
years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist())
selected_year = st.selectbox("Select Year:", years)
chart_col, desc_col = st.columns([7, 3])
with chart_col:
distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
distribution_chart.update_layout(
height=800,
width=None,
margin=dict(l=50, r=50, t=50, b=50)
)
st.plotly_chart(distribution_chart, use_container_width=True)
with desc_col:
st.markdown(f"""
## Distribution of Incidents by {selected_category}
This visualization explores the distribution of traffic incidents across various categories, such as Collision Manner, Weather, Surface Condition, Alcohol Use, and Driver Gender. Each bar represents a specific category value (e.g., "Male" or "Female" for Gender), and the bars are divided into segments based on Injury Severity (e.g., Minor, Moderate, Serious, Fatal).
**Key Features:**
* Interactive Filters: Select a category and filter by year to analyze trends over time.
* Insightful Tooltips: Hover over each segment to view the exact count and percentage of incidents for a given severity level.
* Comparative Analysis: Quickly identify how different conditions or behaviors correlate with injury severity.
This chart provides actionable insights into factors contributing to traffic incidents and their outcomes, helping stakeholders target interventions and improve road safety.
""")
with tab4:
# Dropdown for Unit Type selection
unit_type_pairs = set()
for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
unit_type_pairs.add(pair)
unit_type_pairs = sorted(list(unit_type_pairs))
unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
chart_col, desc_col = st.columns([7, 3])
with chart_col:
injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type)
injuries_fatalities_chart = injuries_fatalities_chart.properties(
height=800
)
st.altair_chart(injuries_fatalities_chart, use_container_width=True)
with desc_col:
st.markdown("""
## Injuries and Fatalities Trends
This line chart shows the **total number of injuries and fatalities by month for the selected unit type pair**. The visualization helps identify seasonal patterns and critical trends in traffic incidents involving specific unit types.
**Key Features:**
* **Injuries Trend** (Blue Line)
- Tracks monthly injury counts
- Shows seasonal variations
- Identifies peak incident periods
* **Fatalities Trend** (Red Line)
- Monitors monthly fatality counts
- Generally lower than injuries
- Highlights critical safety concerns
* **Interactive Selection**
- Filter by specific unit type pairs
- Compare different vehicle combinations
- View overall trends across all types
**Applications:**
- Identify high-risk months
- Guide seasonal safety measures
- Inform emergency response planning
- Support targeted intervention strategies
This visualization aids stakeholders in developing effective safety measures and resource allocation strategies throughout the year.
""")
with tab5:
years = sorted(df['Year'].unique())
selected_year = st.selectbox('Select Year:', years)
# Create two columns for visualization and description
viz_col, desc_col = st.columns([6, 4])
with viz_col:
# First add bar chart
st.subheader("Severity-Location Analysis")
bar_fig = create_map_bar_chart(df, selected_year)
# Capture click events with bar chart
clicked_points = plotly_events(
bar_fig,
click_event=True,
override_height=300,
override_width="100%"
)
if clicked_points:
selected_severity = clicked_points[0]['x']
st.session_state["selected_severity"] = selected_severity
# Show currently selected severity
st.write(f"Selected Severity: {st.session_state['selected_severity'] if st.session_state['selected_severity'] else 'All'}")
# Add map below bar chart
st.subheader("Accident Locations")
map_placeholder = st.empty()
with map_placeholder:
m = create_map(df, selected_year, st.session_state["selected_severity"])
map_data = st_folium(
m,
width=None,
height=600, # Reduced height since it's now below bar chart
key=f"map_{selected_year}_{st.session_state['selected_severity']}",
returned_objects=["null_drawing"]
)
with desc_col:
st.markdown("""
# Exploring Traffic Accident Severity and Location
The two linked graphs show an interactive platform for exploring traffic accident data, featuring a **bar chart** and a **dynamic map**.
- The **bar chart** displays the distribution of accidents by severity.
- The **map** combines marker clustering and heatmaps to highlight accident locations.
- Users can filter data by year and severity to explore patterns.
---
## **Key Features**
- **Interactive Bar Chart:**
Displays accident counts by severity, updating the map based on selected severity.
- **Map with Dual Layers:**
Includes marker clustering for individual accidents and a heatmap to visualize accident density.
- **Year-Based Filtering:**
Allows users to filter data by year and severity for focused analysis.
- **Seamless Integration:**
Combines Streamlit and Folium, with Plotly events linking the visualizations.
---
## **Design**
- **Bar Chart:**
- Uses a calm blue color for clarity.
- **Map:**
- Uses **CartoDB tiles** with red markers and heatmaps for visibility.
---
## **Insights**
- **Severity Patterns:**
The bar chart reveals accident trends across severity levels.
- **Spatial Trends:**
The map identifies high-risk accident hotspots.
- **Yearly and Severity Insights:**
Filters help uncover temporal and severity-related patterns, aiding traffic safety analysis.
""")
st.markdown("---")
# Add conclusion section
st.markdown("# Summary and Conclusion")
st.markdown("""
This project analyzed traffic accident data for Tempe, Arizona, using interactive visualizations to uncover critical trends and patterns. Key visualizations included crash trends over time, severity analysis by age and violations, injury and fatality trends, and the distribution of incidents across factors like weather and collision manner.
A highlight was the integration of linked visualizations, such as bar charts and dynamic maps, enabling users to explore data interactively. This linkage allowed for seamless filtering and focused analysis of severity and location patterns, making it easier to identify high-risk areas and contributing factors.
These insights are invaluable for city planners, traffic authorities, and safety advocates, helping them design targeted interventions, allocate resources effectively, and improve overall road safety in Tempe.
""")
if __name__ == "__main__":
main() |