File size: 32,410 Bytes
9f49eeb
4945824
 
 
 
 
 
 
9f49eeb
4945824
 
 
 
 
 
 
 
 
 
9f49eeb
4945824
 
 
 
 
 
 
 
9f49eeb
4945824
 
9f49eeb
4945824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f49eeb
4945824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f49eeb
4945824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcd96a
4945824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
import streamlit as st
import pandas as pd
import plotly.express as px
import altair as alt
import folium
from streamlit_plotly_events import plotly_events # added for part3 interactivity
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import st_folium

# To fix the color scheme in crash stats plot (asked ChatGPT for appropriate colors)
severity_colors = {
    "No Injury": "#1f77b4",
    "Possible Injury": "#aec7e8",
    "Non Incapacitating Injury": "#ff7f0e",
    "Incapacitating Injury": "#ffbb78",
    "Suspected Minor Injury": "#2ca02c",
    "Suspected Serious Injury": "#98df8a",
    "Fatal": "#d62728",
}

@st.cache_data
def load_and_preprocess_data(file_path):
    # Read the data
    df = pd.read_csv(file_path)
    
    # Basic preprocessing
    df = df.drop(['X', 'Y'], axis=1)
    df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)

    # Convert Year to int 
    df['Year'] = df['Year'].astype(int)

    # Fill missing values
    numeric = ['Age_Drv1', 'Age_Drv2']
    for col in numeric:
        df[col].fillna(df[col].median(), inplace=True)
        
    categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
                  'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
                  'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
    for col in categorical:
        df[col].fillna('Unknown', inplace=True)
    
    # Remove invalid ages
    df = df[
        (df['Age_Drv1'] <= 90) & 
        (df['Age_Drv2'] <= 90) & 
        (df['Age_Drv1'] >= 16) & 
        (df['Age_Drv2'] >= 16)
    ]
    
    # Create age groups
    bins = [15, 25, 35, 45, 55, 65, 90]
    labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
    
    df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
    df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
    
    return df

def create_severity_violation_chart(df, age_group=None):
    # Apply age group filter if selected
    if age_group != 'All Ages':
        df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
    
    # Combine violations from both drivers
    violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
    violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
    
    violations_1.columns = ['Violation', 'Severity', 'count']
    violations_2.columns = ['Violation', 'Severity', 'count']
    
    violations = pd.concat([violations_1, violations_2])
    violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
    
    # Create visualization
    fig = px.bar(
        violations,
        x='Violation',
        y='count',
        color='Severity',
        title=f'Crash Severity Distribution by Violation Type - {age_group}',
        labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
        height=600,
        color_discrete_map=severity_colors, # --> for part 3
    )
    
    # fig.update_layout(
    #     xaxis_tickangle=-45,
    #     legend_title='Severity Level',
    #     barmode='stack'
    # )

    # modified the above code because x-axis labels were partially pruned
    fig.update_layout(
        xaxis_tickangle=-45,
        legend_title='Severity Level',
        barmode='stack',
        margin=dict(t=50, b=150),  # Increase bottom margin to avoid pruning
        xaxis=dict(automargin=True)
    )
    
    # return fig
    return fig, violations

def get_top_violations(df, age_group):
    # Calculate total incidents for the age group
    if age_group == 'All Ages':
        total_incidents = len(df)  
        # Get violations for all ages
        violations = pd.concat([
            df['Violation1_Drv1'].value_counts(),
            df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    else:
        # Filter for specific age group
        filtered_df = df[
            (df['Age_Group_Drv1'] == age_group) | 
            (df['Age_Group_Drv2'] == age_group)
        ]
        total_incidents = len(filtered_df)  
        # Get violations for specific age group
        violations = pd.concat([
            filtered_df['Violation1_Drv1'].value_counts(),
            filtered_df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    
    # Convert to DataFrame and format
    violations_df = violations.reset_index()
    violations_df.columns = ['Violation Type', 'Count']
    
    # Sort by Count in descending order
    violations_df = violations_df.sort_values('Count', ascending=False)
    
    # Calculate percentage of total incidents
    violations_df['Percentage'] = (violations_df['Count'] / total_incidents * 100).round(2)
    violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
    
    return violations_df.head()

@st.cache_data
def create_interactive_pie_chart(violations, selected_violation, selected_age):
    # Filter data based on selected violation
    filtered_data = violations[violations['Violation'] == selected_violation]
    
    # Create a pie chart for severity distribution of the selected violation type
    fig = px.pie(
        filtered_data,
        names='Severity',
        values='count',
        # title=f'Severity Level Distribution for Violation: {selected_violation}',
        title=f'Severity Level Distribution for Violation: {selected_violation} - {selected_age}', # dynamically update pie chart's title
        height=600,
        color_discrete_map=severity_colors
    )
    
    return fig

def create_map_bar_chart(df, selected_year):
    # Create severity count bar chart
    filtered_df = df[df['Year'] == selected_year]
    severity_count = filtered_df['Injuryseverity'].value_counts().reset_index()
    severity_count.columns = ['Injuryseverity', 'Count']
    
    fig = px.bar(
        severity_count, 
        x='Injuryseverity', 
        y='Count', 
        title="Accidents by Severity",
        labels={'Injuryseverity': 'Severity', 'Count': 'Number of Accidents'}  # Adjust height as needed
    )
    fig.update_traces(marker_color='blue')
    fig.update_layout(
        clickmode='event+select',  # Enable interactivity
        xaxis_tickangle=45,       # Rotate x-axis labels 45 degrees
        margin=dict(t=50, b=150),         # Add bottom margin to prevent label cutoff
    )
    return fig


@st.cache_data
def create_map(df, selected_year, selected_severity=None):
    # Filter data by selected year
    filtered_df = df[df['Year'] == selected_year]
    
    # Filter further by selected severity if provided
    if selected_severity:
        filtered_df = filtered_df[filtered_df['Injuryseverity'] == selected_severity]
    
    # Remove rows with missing latitude or longitude
    filtered_df = filtered_df.dropna(subset=['Latitude', 'Longitude'])
    
    # Create the map
    m = folium.Map(
        location=[33.4255, -111.9400],  # Default location (can be customized)
        zoom_start=12,
        control_scale=True,
        tiles='CartoDB positron'
    )
    
    # Add marker cluster
    marker_cluster = MarkerCluster(name="Accident Locations").add_to(m)
    
    # Add accident markers
    for _, row in filtered_df.iterrows():
        folium.Marker(
            location=[row['Latitude'], row['Longitude']],
            popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}",
            icon=folium.Icon(color='red')
        ).add_to(marker_cluster)
    
    # Add heatmap
    heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist()
    HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3, name="Heat Map").add_to(m)
    
    folium.LayerControl().add_to(m)
    return m

def create_injuries_fatalities_chart(crash_data, unit_type):

    # 5th visualization title
    # st.header("5. Total Injuries and Fatalities by Month")
    
    # Filter rows where we have valid data for all necessary columns
    crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna()

    # Convert "DateTime" to datetime type
    crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce')
    crash_data['Month'] = crash_data['DateTime'].dt.month_name()

    # sort months in order
    month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
    crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True)

    # Dropdown for Unit Type selection
    # Dropdown for Unit Type selection
    # st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist())  # previous location of dropdown in sidebar
    # unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist())
    # unit_type_pairs = set()
    # for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
    #     if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
    #         pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
    #         unit_type_pairs.add(pair)
    # # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order
    # unit_type_pairs = sorted(list(unit_type_pairs))
    # unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)

    # Filter data based on the selected unit type
    if unit_type == 'Total':
        filtered_data = crash_data
    else:
        unit_one, unit_two = unit_type.split(' vs ')
        filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) |
                                   ((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))]

    # Group data by month and calculate total injuries and fatalities
    monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index()

    # Reshape the data for easier plotting
    injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'})
    injuries['Measure'] = 'Total Injuries'

    fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'})
    fatalities['Measure'] = 'Total Fatalities'

    combined_data = pd.concat([injuries, fatalities])

    # Originally tried to use bar chart but switched to line chart for better trend visualization
    # alt.Chart(monthly_sum).mark_bar().encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')),
    #     color=alt.value('blue'),
    #     tooltip=['Month', 'Totalinjuries']
    # ).properties(
    #     title='Total Injuries and Fatalities by Month',
    #     width=300,
    #     height=300
    # ) + alt.Chart(monthly_sum).mark_bar().encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')),
    #     color=alt.value('red'),
    #     tooltip=['Month', 'Totalfatalities']
    # )

    # Tried to figure out how to plot a legend using altair
    # line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')),
    #     color=alt.value('blue'),
    #     tooltip=['Month', 'Totalinjuries']
    # ).properties(
    #     title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
    #     width=600,
    #     height=400
    # ) + alt.Chart(monthly_sum).mark_line(point=True).encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')),
    #     color=alt.value('red'),
    #     tooltip=['Month', 'Totalfatalities']
    # ).configure_legend(
    #     titleFontSize=14,
    #     labelFontSize=12,
    #     titleColor='black',
    #     labelColor='black'
    # )
    
    # Plot line chart
    line_chart = alt.Chart(combined_data).mark_line(point=True).encode(
        x=alt.X('Month:N', sort=month_order, title='Month'),
        y=alt.Y('Value:Q', title='Total Injuries & Fatalities'),
        color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])),
        tooltip=['Month', 'Measure:N', 'Value:Q']
    ).properties(
        title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
        width=600,
        height=400
    )

    # # Combine the charts (trying to make legend)
    # combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties(
    #     title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
    #     width=600,
    #     height=400
    # ).configure_legend(
    #     titleFontSize=14,
    #     labelFontSize=12,
    #     titleColor='black',
    #     labelColor='black'
    # )
    
    return line_chart

def create_crash_trend_chart(df, weather=None):
    if weather and weather != 'All Conditions':
        df = df[df['Weather'] == weather]
    
    # Group data by year and count unique Incident IDs
    trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index()
    trend_data.columns = ['Year', 'Crash Count']
    
    # Create line graph
    fig = px.line(
        trend_data,
        x='Year',
        y='Crash Count',
        title=f'Crash Trend Over Time ({weather})',
        labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'},
        markers=True,
        height=600
    )
    
    fig.update_traces(line=dict(width=2), marker=dict(size=8))
    fig.update_layout(legend_title_text='Trend')
    
    return fig

def create_category_distribution_chart(df, selected_category, selected_year):
    # Filter by selected year
    if selected_year != 'All Years':
        df = df[df['Year'] == int(selected_year)]

    # Group by selected category and Injury Severity
    grouped_data = df.groupby([selected_category, 'Injuryseverity']).size().reset_index(name='Count')

    # Calculate percentages for each category value
    total_counts = grouped_data.groupby(selected_category)['Count'].transform('sum')
    grouped_data['Percentage'] = (grouped_data['Count'] / total_counts * 100).round(2)

    # Create the stacked bar chart using Plotly
    fig = px.bar(
        grouped_data,
        x=selected_category,
        y='Count',
        color='Injuryseverity',
        text='Percentage',
        title=f'Distribution of Incidents by {selected_category} ({selected_year})',
        labels={'Count': 'Number of Incidents', selected_category: 'Category'},
        height=600,
    )

    # Customize the chart appearance
    fig.update_traces(texttemplate='%{text}%', textposition='inside')
    fig.update_layout(
        barmode='stack',
        xaxis_tickangle=-45,
        legend_title='Injury Severity',
        margin=dict(t=50, b=150, l=50, r=50), 
    )

    return fig

def main():
    st.set_page_config(page_title="Terrific Tempe Traffic", layout="wide")

    st.markdown("""
    <style>
    .reportview-container {
        font-size: 20px;
    }
    h1, h2, h3, h4, h5, h6 {
        font-size: 150%; 
    }
    p {
        font-size: 125%; 
    }
    </style>
    """, unsafe_allow_html=True)
    

    st.markdown("""
        <style>
        .title {
            text-align: center;
            padding: 25px;
        }
        </style>
        """, unsafe_allow_html=True)
    
    st.markdown("<div class='title'><h1> Accident Analysis for City of Tempe, Arizona </h1></div>", unsafe_allow_html=True)

    st.markdown("""
    # Introduction to the Traffic Accident Dataset
    This dataset contains detailed information about traffic accidents in the city of **Tempe**. It includes various attributes of the accidents, such as the severity of injuries, the demographics of the drivers involved, the locations of the incidents, and the conditions at the time of the accidents. The dataset covers accidents that occurred over several years, with data on factors like **weather conditions**, **road surface conditions**, the **time of day**, and the type of **violations** (e.g., alcohol or drug use) that may have contributed to the accident.
    
    The data was sourced from **Tempe City's traffic incident reports** and provides a comprehensive view of the factors influencing road safety and accident severity in the city. By analyzing this dataset, we can gain insights into the key contributors to traffic incidents and uncover trends that could help improve traffic safety measures, urban planning, and law enforcement policies in the city.
    """)
    
    
    
    # Load data
    df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')

    if 'Weather' not in df.columns:
        df['Weather'] = 'Unknown'

    if 'selected_violation' not in st.session_state:
        st.session_state['selected_violation'] = None
    
    if "selected_severity" not in st.session_state:
        st.session_state["selected_severity"] = None
    

    # Create tabs for different visualizations
    tab1, tab2, tab3, tab4, tab5 = st.tabs([
    "Crash Trend", 
    "Violation-Severity Analysis", 
    "Distribution by Category",
    "Crash Injuries/Fatalities",
    "Severity-Location Analysis"
])
    
    with tab1:
        # Weather condition filter
        weather = ['All Conditions'] + sorted(df['Weather'].unique())
        selected_weather = st.selectbox('Select Weather Condition:', weather)
        
        trend_col, desc_col = st.columns([7, 3])
        
        with trend_col:
            trend_fig = create_crash_trend_chart(df, selected_weather)
            trend_fig.update_layout(
                height=800,
                width=None,
                margin=dict(l=50, r=50, t=50, b=50)
            )
            st.plotly_chart(trend_fig, use_container_width=True)
            
        

        with desc_col:
            st.markdown("""
            ## **Crash Trend Over Time**
            This interactive line chart visualizes the trend of unique traffic crashes over the years, optionally filtered by weather conditions. It highlights how crash frequency changes over time, helping identify trends and potential contributing factors.
            
            **Key Features:**
            * **Time Trend Analysis**: Displays the total number of unique crashes for each year, showing long-term patterns.
            * **Weather Filter**: Users can filter the data by weather conditions (e.g., "Rainy", "Sunny") to analyze how weather impacts crash trends.
            * **Interactive Tooltips**: Hovering over data points reveals the exact crash count for each year, providing detailed insights.
            
            **Color Scheme and Design:**
            * **Line and Markers**: A smooth line connects data points, with prominent markers for each year to highlight trends clearly.
            * **Dynamic Title**: The chart updates its title to reflect the selected weather condition or "All Conditions" for the overall trend.
            
            **Insights:**
            
            This chart helps uncover:
               * Annual fluctuations in crash incidents.
               * Correlations between weather conditions and crash frequencies.
               * Historical patterns that can guide future safety measures and urban planning decisions
            """)

    with tab2:
        
        age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
        selected_age = st.selectbox('Select Age Group:', age_groups)

        trend_col, desc_col = st.columns([6, 4])
        
        with trend_col:
            # Create and display main chart
            fig, violations = create_severity_violation_chart(df, selected_age)
            
            # Display the chart with selection events enabled
            chart_event = st.plotly_chart(
                fig, 
                use_container_width=True,
                key="violation_chart",
                on_select="rerun"
            )

            # Check if there's a selection event
            if chart_event and chart_event.selection and chart_event.selection.points:
                # Get the selected violation type
                selected_violation = chart_event.selection.points[0]['x']
                # Create and display pie chart for selected violation
                pie_chart = create_interactive_pie_chart(violations, selected_violation, selected_age)
                st.plotly_chart(pie_chart, use_container_width=True)
            
            # # Display statistics
            # if selected_age == 'All Ages':
            #     total_incidents = len(df)
            # else:
            #     total_incidents = len(df[
            #         (df['Age_Group_Drv1'] == selected_age) | 
            #         (df['Age_Group_Drv2'] == selected_age)
            #     ])

        with desc_col: 
            
            st.markdown("""
            # Severity of Violations Across Age Groups
    
            This section provides an interactive visualization of **crash severities** linked to specific violation types, segmented by driver age groups. It enables a comprehensive analysis of how **age influences crash severity and violation trends**. The visualization is linked to an **interactive pie chart** that updates when a specific bar is selected, displaying the detailed distribution of the selected violation type based on the selected age group.
    
            ---
    
            ## **Key Features**
    
            ### 1. **Age Group Analysis**
            - Select specific age groups (e.g., "16-25", "65+") or analyze all ages to explore correlations between:
            - Age
            - Violation type
            - Crash severity
            - Understand how different age groups are involved in various types of violations.
    
            ### 2. **Violation Breakdown**
            - Examine the most frequent violations contributing to traffic accidents for each age group.
            - View detailed statistics showing the distribution of violation types.
    
            ### 3. **Understanding Severity Level**
            - Identify the proportion of severity levels for a specific violation type based on different age groups.
            - Investigate detailed severity patterns for each violation type across age groups.
    
            ---
    
            ## **Insights**
    
            - **Identifies High-Risk Behaviors:** 
            - Highlights risky behaviors such as reckless driving in younger drivers or impaired driving in older groups.
            
            - **Highlights Severity Associations:** 
            - Shows which violations are associated with more severe outcomes, aiding targeted safety interventions and public awareness campaigns.
    
            - **Supports Data-Driven Decision Making:** 
            - Provides insights for designing **age-specific traffic safety programs**.
    
            ---
            """)

    with tab3:
        # Dropdown for category selection
        categories = [
            'Collisionmanner',
            'Lightcondition',
            'Weather',
            'SurfaceCondition',
            'AlcoholUse_Drv1',
            'Gender_Drv1',
        ]
        selected_category = st.selectbox("Select Category:", categories)

        # Dropdown for year selection
        years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist())
        selected_year = st.selectbox("Select Year:", years)

        chart_col, desc_col = st.columns([7, 3])
        
        with chart_col:
            distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
            distribution_chart.update_layout(
                height=800,
                width=None,
                margin=dict(l=50, r=50, t=50, b=50)
            )
            st.plotly_chart(distribution_chart, use_container_width=True)

        with desc_col:
            st.markdown(f"""
            ## Distribution of Incidents by {selected_category}
            This visualization explores the distribution of traffic incidents across various categories, such as Collision Manner, Weather, Surface Condition, Alcohol Use, and Driver Gender. Each bar represents a specific category value (e.g., "Male" or "Female" for Gender), and the bars are divided into segments based on Injury Severity (e.g., Minor, Moderate, Serious, Fatal).
    
            **Key Features:**
            * Interactive Filters: Select a category and filter by year to analyze trends over time.
            * Insightful Tooltips: Hover over each segment to view the exact count and percentage of incidents for a given severity level.
            * Comparative Analysis: Quickly identify how different conditions or behaviors correlate with injury severity.
    
            This chart provides actionable insights into factors contributing to traffic incidents and their outcomes, helping stakeholders target interventions and improve road safety.
            """)

    with tab4:
        # Dropdown for Unit Type selection
        unit_type_pairs = set()
        for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
            if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
                pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
                unit_type_pairs.add(pair)
        unit_type_pairs = sorted(list(unit_type_pairs))
        unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
    
        chart_col, desc_col = st.columns([7, 3])
    
        with chart_col:
            injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type)
            injuries_fatalities_chart = injuries_fatalities_chart.properties(
                height=800
            )
            st.altair_chart(injuries_fatalities_chart, use_container_width=True)
    
        with desc_col:
            st.markdown("""
            ## Injuries and Fatalities Trends
            
            This line chart shows the **total number of injuries and fatalities by month for the selected unit type pair**. The visualization helps identify seasonal patterns and critical trends in traffic incidents involving specific unit types.
    
            **Key Features:**
            * **Injuries Trend** (Blue Line)
                - Tracks monthly injury counts
                - Shows seasonal variations
                - Identifies peak incident periods
    
            * **Fatalities Trend** (Red Line)
                - Monitors monthly fatality counts
                - Generally lower than injuries
                - Highlights critical safety concerns
    
            * **Interactive Selection**
                - Filter by specific unit type pairs
                - Compare different vehicle combinations
                - View overall trends across all types
    
            **Applications:**
            - Identify high-risk months
            - Guide seasonal safety measures
            - Inform emergency response planning
            - Support targeted intervention strategies
            
            This visualization aids stakeholders in developing effective safety measures and resource allocation strategies throughout the year.
            """)
    
    with tab5:
        years = sorted(df['Year'].unique())
        selected_year = st.selectbox('Select Year:', years)
        
        # Create two columns for visualization and description
        viz_col, desc_col = st.columns([6, 4])
        
        with viz_col:
            # First add bar chart
            st.subheader("Severity-Location Analysis")
            bar_fig = create_map_bar_chart(df, selected_year)
            
            # Capture click events with bar chart
            clicked_points = plotly_events(
                bar_fig, 
                click_event=True,
                override_height=300,
                override_width="100%"
            )
            
            if clicked_points:
                selected_severity = clicked_points[0]['x']
                st.session_state["selected_severity"] = selected_severity
                
            # Show currently selected severity
            st.write(f"Selected Severity: {st.session_state['selected_severity'] if st.session_state['selected_severity'] else 'All'}")
            
            # Add map below bar chart
            st.subheader("Accident Locations")
            map_placeholder = st.empty()
            with map_placeholder:
                m = create_map(df, selected_year, st.session_state["selected_severity"])
                map_data = st_folium(
                    m,
                    width=None,
                    height=600,  # Reduced height since it's now below bar chart
                    key=f"map_{selected_year}_{st.session_state['selected_severity']}",
                    returned_objects=["null_drawing"]
                )
        
        with desc_col:
            st.markdown("""
            # Exploring Traffic Accident Severity and Location 
            The two linked graphs show an interactive platform for exploring traffic accident data, featuring a **bar chart** and a **dynamic map**. 
            - The **bar chart** displays the distribution of accidents by severity.
            - The **map** combines marker clustering and heatmaps to highlight accident locations. 
            - Users can filter data by year and severity to explore patterns.
            ---
            ## **Key Features**
            - **Interactive Bar Chart:** 
            Displays accident counts by severity, updating the map based on selected severity.
            - **Map with Dual Layers:**
            Includes marker clustering for individual accidents and a heatmap to visualize accident density.
            - **Year-Based Filtering:**
            Allows users to filter data by year and severity for focused analysis.
            - **Seamless Integration:**
            Combines Streamlit and Folium, with Plotly events linking the visualizations.
            ---
            ## **Design**
            - **Bar Chart:**
            - Uses a calm blue color for clarity.
            - **Map:**
            - Uses **CartoDB tiles** with red markers and heatmaps for visibility.
            ---
            ## **Insights**
            - **Severity Patterns:** 
            The bar chart reveals accident trends across severity levels.
            - **Spatial Trends:** 
            The map identifies high-risk accident hotspots.
            - **Yearly and Severity Insights:** 
            Filters help uncover temporal and severity-related patterns, aiding traffic safety analysis.
            """)
    st.markdown("---")
    
    # Add conclusion section
    st.markdown("# Summary and Conclusion")
    
    st.markdown("""

This project analyzed traffic accident data for Tempe, Arizona, using interactive visualizations to uncover critical trends and patterns. Key visualizations included crash trends over time, severity analysis by age and violations, injury and fatality trends, and the distribution of incidents across factors like weather and collision manner.

A highlight was the integration of linked visualizations, such as bar charts and dynamic maps, enabling users to explore data interactively. This linkage allowed for seamless filtering and focused analysis of severity and location patterns, making it easier to identify high-risk areas and contributing factors.

These insights are invaluable for city planners, traffic authorities, and safety advocates, helping them design targeted interventions, allocate resources effectively, and improve overall road safety in Tempe.
    """)



if __name__ == "__main__":
    main()