Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pytesseract
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Load the pre-trained model for question generation
|
7 |
+
generator = pipeline("text2text-generation", model="t5-small")
|
8 |
+
|
9 |
+
# Function to process image and generate questions
|
10 |
+
def generate_questions(image):
|
11 |
+
# Step 1: Extract text from the image using pytesseract
|
12 |
+
text = pytesseract.image_to_string(image)
|
13 |
+
|
14 |
+
# Step 2: Use the T5 model to generate questions from the text
|
15 |
+
prompt = f"Generate multiple-choice questions based on the following text:\n{text}"
|
16 |
+
questions = generator(prompt, max_length=150, num_return_sequences=1)
|
17 |
+
|
18 |
+
# Return the generated questions
|
19 |
+
return questions[0]['generated_text']
|
20 |
+
|
21 |
+
# Create the Gradio interface
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=generate_questions,
|
24 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
25 |
+
outputs=gr.Textbox(label="Generated Question Paper"),
|
26 |
+
title="Image to Question Paper Generator",
|
27 |
+
description="Upload images containing text, and this tool will generate a question paper based on the text found in the images."
|
28 |
+
)
|
29 |
+
|
30 |
+
iface.launch()
|