NithyasriVllB commited on
Commit
a5b6369
·
verified ·
1 Parent(s): e9eec48

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pytesseract
3
+ from PIL import Image
4
+ from transformers import pipeline
5
+
6
+ # Load the pre-trained model for question generation
7
+ generator = pipeline("text2text-generation", model="t5-small")
8
+
9
+ # Function to process image and generate questions
10
+ def generate_questions(image):
11
+ # Step 1: Extract text from the image using pytesseract
12
+ text = pytesseract.image_to_string(image)
13
+
14
+ # Step 2: Use the T5 model to generate questions from the text
15
+ prompt = f"Generate multiple-choice questions based on the following text:\n{text}"
16
+ questions = generator(prompt, max_length=150, num_return_sequences=1)
17
+
18
+ # Return the generated questions
19
+ return questions[0]['generated_text']
20
+
21
+ # Create the Gradio interface
22
+ iface = gr.Interface(
23
+ fn=generate_questions,
24
+ inputs=gr.Image(type="pil", label="Upload Image"),
25
+ outputs=gr.Textbox(label="Generated Question Paper"),
26
+ title="Image to Question Paper Generator",
27
+ description="Upload images containing text, and this tool will generate a question paper based on the text found in the images."
28
+ )
29
+
30
+ iface.launch()