NithyasriVllB commited on
Commit
fd67120
·
verified ·
1 Parent(s): 7df73a9

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -30
app.py DELETED
@@ -1,30 +0,0 @@
1
- import gradio as gr
2
- import pytesseract
3
- from PIL import Image
4
- from transformers import pipeline
5
-
6
- # Load the pre-trained model for question generation
7
- generator = pipeline("text2text-generation", model="t5-small")
8
-
9
- # Function to process image and generate questions
10
- def generate_questions(image):
11
- # Step 1: Extract text from the image using pytesseract
12
- text = pytesseract.image_to_string(image)
13
-
14
- # Step 2: Use the T5 model to generate questions from the text
15
- prompt = f"Generate multiple-choice questions based on the following text:\n{text}"
16
- questions = generator(prompt, max_length=150, num_return_sequences=1)
17
-
18
- # Return the generated questions
19
- return questions[0]['generated_text']
20
-
21
- # Create the Gradio interface
22
- iface = gr.Interface(
23
- fn=generate_questions,
24
- inputs=gr.Image(type="pil", label="Upload Image"),
25
- outputs=gr.Textbox(label="Generated Question Paper"),
26
- title="Image to Question Paper Generator",
27
- description="Upload images containing text, and this tool will generate a question paper based on the text found in the images."
28
- )
29
-
30
- iface.launch()