Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,24 +2,26 @@ from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
|
5 |
-
# Load the pre-trained Pix2Struct model and processor
|
6 |
model_name = "google/pix2struct-mathqa-base"
|
7 |
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
8 |
processor = Pix2StructProcessor.from_pretrained(model_name)
|
9 |
|
10 |
def solve_math_problem(image):
|
11 |
try:
|
12 |
-
#
|
13 |
-
image = image.convert("RGB")
|
|
|
|
|
|
|
14 |
inputs = processor(
|
15 |
-
images=[image],
|
16 |
-
text="Solve the following math problem:",
|
17 |
return_tensors="pt",
|
18 |
-
max_patches=2048
|
19 |
-
header_text="Math Problem" # Add header text
|
20 |
)
|
21 |
|
22 |
-
# Generate the solution
|
23 |
predictions = model.generate(
|
24 |
**inputs,
|
25 |
max_new_tokens=200,
|
@@ -28,33 +30,38 @@ def solve_math_problem(image):
|
|
28 |
temperature=0.2
|
29 |
)
|
30 |
|
31 |
-
# Decode the
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
solution = processor.decode(
|
33 |
-
predictions[0],
|
34 |
skip_special_tokens=True,
|
35 |
clean_up_tokenization_spaces=True
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
return f"Problem: {processor.decode(inputs.input_ids[0])}\nSolution: {solution}"
|
40 |
|
41 |
except Exception as e:
|
42 |
return f"Error processing image: {str(e)}"
|
43 |
|
44 |
-
#
|
45 |
demo = gr.Interface(
|
46 |
fn=solve_math_problem,
|
47 |
inputs=gr.Image(
|
48 |
type="pil",
|
49 |
label="Upload Handwritten Math Problem",
|
50 |
-
image_mode="RGB", # Force RGB
|
51 |
source="upload"
|
52 |
),
|
53 |
outputs=gr.Textbox(label="Solution", show_copy_button=True),
|
54 |
title="Handwritten Math Problem Solver",
|
55 |
description="Upload an image of a handwritten math problem (algebra, arithmetic, etc.) and get the solution",
|
56 |
examples=[
|
57 |
-
["example_addition.png"], #
|
58 |
["example_algebra.jpg"]
|
59 |
],
|
60 |
theme="soft",
|
@@ -62,4 +69,4 @@ demo = gr.Interface(
|
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
-
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
|
5 |
+
# Load the pre-trained Pix2Struct model and processor.
|
6 |
model_name = "google/pix2struct-mathqa-base"
|
7 |
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
8 |
processor = Pix2StructProcessor.from_pretrained(model_name)
|
9 |
|
10 |
def solve_math_problem(image):
|
11 |
try:
|
12 |
+
# Ensure the image is in RGB format.
|
13 |
+
image = image.convert("RGB")
|
14 |
+
|
15 |
+
# Preprocess the image and text.
|
16 |
+
# Note: We omit the header_text parameter because this is not a VQA task.
|
17 |
inputs = processor(
|
18 |
+
images=[image], # Provide a list of images.
|
19 |
+
text="Solve the following math problem:", # Prompt text.
|
20 |
return_tensors="pt",
|
21 |
+
max_patches=2048 # Increase the maximum patches for better math handling.
|
|
|
22 |
)
|
23 |
|
24 |
+
# Generate the solution with specified generation parameters.
|
25 |
predictions = model.generate(
|
26 |
**inputs,
|
27 |
max_new_tokens=200,
|
|
|
30 |
temperature=0.2
|
31 |
)
|
32 |
|
33 |
+
# Decode the input text and the model prediction.
|
34 |
+
# Here, we access "input_ids" via the dictionary key.
|
35 |
+
problem_text = processor.decode(
|
36 |
+
inputs["input_ids"][0],
|
37 |
+
skip_special_tokens=True,
|
38 |
+
clean_up_tokenization_spaces=True
|
39 |
+
)
|
40 |
solution = processor.decode(
|
41 |
+
predictions[0],
|
42 |
skip_special_tokens=True,
|
43 |
clean_up_tokenization_spaces=True
|
44 |
)
|
45 |
|
46 |
+
return f"Problem: {problem_text}\nSolution: {solution}"
|
|
|
47 |
|
48 |
except Exception as e:
|
49 |
return f"Error processing image: {str(e)}"
|
50 |
|
51 |
+
# Set up the Gradio interface.
|
52 |
demo = gr.Interface(
|
53 |
fn=solve_math_problem,
|
54 |
inputs=gr.Image(
|
55 |
type="pil",
|
56 |
label="Upload Handwritten Math Problem",
|
57 |
+
image_mode="RGB", # Force RGB conversion.
|
58 |
source="upload"
|
59 |
),
|
60 |
outputs=gr.Textbox(label="Solution", show_copy_button=True),
|
61 |
title="Handwritten Math Problem Solver",
|
62 |
description="Upload an image of a handwritten math problem (algebra, arithmetic, etc.) and get the solution",
|
63 |
examples=[
|
64 |
+
["example_addition.png"], # Ensure these example files exist in your working directory.
|
65 |
["example_algebra.jpg"]
|
66 |
],
|
67 |
theme="soft",
|
|
|
69 |
)
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
+
demo.launch()
|