Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,42 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
model_name = "google/pix2struct-docvqa-large"
|
8 |
+
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
9 |
+
processor = Pix2StructProcessor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def process_image(image_path):
|
12 |
+
try:
|
13 |
+
# Load the image
|
14 |
+
image = Image.open(image_path).convert("RGB")
|
15 |
+
|
16 |
+
# Prepare the input
|
17 |
+
inputs = processor(images=image, text="What does this image say?", return_tensors="pt")
|
18 |
+
|
19 |
+
# Generate prediction
|
20 |
+
output = model.generate(**inputs)
|
21 |
+
|
22 |
+
# Decode the output
|
23 |
+
solution = processor.decode(output[0], skip_special_tokens=True)
|
24 |
+
return solution
|
25 |
+
|
26 |
+
except Exception as e:
|
27 |
+
return f"Error processing image: {str(e)}"
|
28 |
+
|
29 |
+
def predict(image):
|
30 |
+
"""Handles image input for Gradio."""
|
31 |
+
return process_image(image)
|
32 |
+
|
33 |
+
# Gradio app
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=predict,
|
36 |
+
inputs=gr.Image(type="filepath"),
|
37 |
+
outputs="text",
|
38 |
+
title="Image Text Solution"
|
39 |
+
)
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
iface.launch()
|