NitishBorthakur commited on
Commit
8734366
·
verified ·
1 Parent(s): 7096c98

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ from PIL import Image
4
+ from io import BytesIO
5
+ import numpy as np
6
+ from landingai.common import decode_bitmap_rle
7
+ import cv2
8
+ import pydantic
9
+
10
+ ENDPOINT_ID = "ba678fa4-65d1-4b87-8c85-cebd15224783"
11
+ API_KEY = "land_sk_ikq7WEKGtaKI7pXIcKt2x7RoyYE6FBReqGOmKtEhjcmFbLbQsK"
12
+ API_URL = f"https://predict.app.landing.ai/inference/v1/predict?endpoint_id={ENDPOINT_ID}"
13
+
14
+ def predict_from_landinglens(image_path):
15
+ # Load and keep original image
16
+ original_img = Image.open(image_path).convert("RGB")
17
+ img_array = np.array(original_img)
18
+
19
+ # Get image dimensions
20
+ height, width = img_array.shape[:2]
21
+ total_pixels = height * width
22
+
23
+ # Prepare for API
24
+ buffered = BytesIO()
25
+ original_img.save(buffered, format="JPEG")
26
+ img_bytes = buffered.getvalue()
27
+
28
+ files = {"file": (image_path, img_bytes, "image/jpeg")}
29
+ headers = {"apikey": API_KEY}
30
+
31
+ try:
32
+ response = requests.post(API_URL, files=files, headers=headers)
33
+ if response.status_code == 503:
34
+ return "Service temporarily unavailable. Please try again later."
35
+ response.raise_for_status()
36
+ prediction = response.json()
37
+
38
+ if "predictions" not in prediction or not prediction.get("predictions"):
39
+ print("No 'predictions' key found or it's empty.")
40
+ return "Error: No 'predictions' found."
41
+
42
+ bitmaps = prediction["predictions"]["bitmaps"]
43
+ masked_images = []
44
+ coverage_info = []
45
+
46
+ for i, (bitmap_id, bitmap_data) in enumerate(bitmaps.items()):
47
+ try:
48
+ # Decode mask
49
+ mask = decode_bitmap_rle(bitmap_data["bitmap"])
50
+ if isinstance(mask, list):
51
+ mask = np.array(mask)
52
+
53
+ # Reshape mask to match image dimensions
54
+ mask = mask.reshape(prediction["predictions"]["imageHeight"],
55
+ prediction["predictions"]["imageWidth"])
56
+
57
+ # Calculate area coverage
58
+ mask_area = np.sum(mask > 0)
59
+ coverage_percentage = (mask_area / total_pixels) * 100
60
+ label_name = bitmap_data.get("label_name", f"Mask {i}")
61
+ coverage_info.append(f"{label_name}: {coverage_percentage:.2f}%")
62
+
63
+ # Create colored overlay
64
+ colored_mask = np.zeros_like(img_array)
65
+ colored_mask[mask > 0] = [255, 0, 0] # Red overlay for mask
66
+
67
+ # Combine original image with colored mask
68
+ alpha = 0.5 # Transparency of the overlay
69
+ combined = cv2.addWeighted(img_array, 1, colored_mask, alpha, 0)
70
+
71
+ # Convert to PIL Image
72
+ masked_image = Image.fromarray(combined)
73
+ masked_images.append(masked_image)
74
+
75
+ except Exception as e:
76
+ print(f"Error processing mask {i}: {e}")
77
+ continue
78
+
79
+ return masked_images, "\n".join(coverage_info)
80
+
81
+ except requests.exceptions.RequestException as e:
82
+ print(f"API Error: {e}")
83
+ return f"API Error: {e}"
84
+
85
+ iface = gr.Interface(
86
+ fn=predict_from_landinglens,
87
+ inputs=gr.Image(type="filepath"),
88
+ outputs=[
89
+ gr.Gallery(format="png"),
90
+ gr.Textbox(label="Area of each mask in the image")
91
+ ],
92
+ title="Crosswalk detection model",
93
+ )
94
+ iface.launch()