File size: 4,239 Bytes
f9ed277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8af29c3
f9ed277
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import scipy.io.wavfile as wavfile

from transformers import pipeline

narrator = pipeline("text-to-speech",
                    model="kakao-enterprise/vits-ljs")

object_detector = pipeline("object-detection",
                model="facebook/detr-resnet-50")

def generate_audio(text):
    # Generate the narrated text
    narrated_text = narrator(text)

    # Save the audio to a WAV file
    wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
                  data=narrated_text["audio"][0])

    # Return the path to the saved audio file
    return "output.wav"

def read_objects(detection_objects):
    # Initialize counters for each object label
    object_counts = {}

    # Count the occurrences of each label
    for detection in detection_objects:
        label = detection['label']
        if label in object_counts:
            object_counts[label] += 1
        else:
            object_counts[label] = 1

    # Generate the response string
    response = "This picture contains"
    labels = list(object_counts.keys())
    for i, label in enumerate(labels):
        response += f" {object_counts[label]} {label}"
        if object_counts[label] > 1:
            response += "s"
        if i < len(labels) - 2:
            response += ","
        elif i == len(labels) - 2:
            response += " and"

    response += "."

    return response



def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
    """
    Draws bounding boxes on the given image based on the detections.
    :param image: PIL.Image object
    :param detections: List of detection results, where each result is a dictionary containing
                       'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin',
                       'ymin', 'xmax', 'ymax'.
    :param font_path: Path to the TrueType font file to use for text.
    :param font_size: Size of the font to use for text.
    :return: PIL.Image object with bounding boxes drawn.
    """
    # Make a copy of the image to draw on
    draw_image = image.copy()
    draw = ImageDraw.Draw(draw_image)

    # Load custom font or default font if path not provided
    if font_path:
        font = ImageFont.truetype(font_path, font_size)
    else:
        # When font_path is not provided, load default font but it's size is fixed
        font = ImageFont.load_default()
        # Increase font size workaround by using a TTF font file, if needed, can download and specify the path

    for detection in detections:
        box = detection['box']
        xmin = box['xmin']
        ymin = box['ymin']
        xmax = box['xmax']
        ymax = box['ymax']

        # Draw the bounding box
        draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)

        # Optionally, you can also draw the label and score
        label = detection['label']
        score = detection['score']
        text = f"{label} {score:.2f}"

        # Draw text with background rectangle for visibility
        if font_path:  # Use the custom font with increased size
            text_size = draw.textbbox((xmin, ymin), text, font=font)
        else:
            # Calculate text size using the default font
            text_size = draw.textbbox((xmin, ymin), text)

        draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
        draw.text((xmin, ymin), text, fill="white", font=font)

    return draw_image


def detect_object(image):
    raw_image = image
    output = object_detector(raw_image)
    processed_image = draw_bounding_boxes(raw_image, output)
    natural_text = read_objects(output)
    processed_audio = generate_audio(natural_text)
    return processed_image, processed_audio


demo = gr.Interface(fn=detect_object,
                    inputs=[gr.Image(label="Select Image",type="pil")],
                    outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")],
                    title= "Audio Described Object Detector",
                    description="THIS APPLICATION WILL BE USED TO HIGHLIGHT OBJECTS AND GIVES AUDIO DESCRIPTION FOR THE PROVIDED INPUT IMAGE.")
demo.launch()