eikarna
commited on
Commit
·
d9760ae
1
Parent(s):
853734d
Fix: File Upload Session
Browse files
app.py
CHANGED
@@ -1,264 +1,147 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import logging
|
4 |
-
import
|
5 |
-
from typing import Dict, Any, Optional, List
|
6 |
-
import os
|
7 |
-
from PIL import Image
|
8 |
-
import pytesseract
|
9 |
-
import fitz # PyMuPDF
|
10 |
-
from io import BytesIO
|
11 |
-
import hashlib
|
12 |
-
from sentence_transformers import SentenceTransformer
|
13 |
-
import numpy as np
|
14 |
-
from pathlib import Path
|
15 |
-
import pickle
|
16 |
-
import tempfile
|
17 |
|
18 |
# Configure logging
|
19 |
-
logging.basicConfig(
|
20 |
-
level=logging.INFO,
|
21 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
22 |
-
)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
return SentenceTransformer('all-MiniLM-L6-v2')
|
29 |
-
|
30 |
-
# Modified Vector Store Class
|
31 |
-
class SimpleVectorStore:
|
32 |
-
def __init__(self):
|
33 |
-
self.documents = []
|
34 |
-
self.embeddings = []
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
self.embeddings.append(embedding)
|
39 |
-
|
40 |
-
def search(self, query_embedding: np.ndarray, top_k: int = 3) -> List[str]:
|
41 |
-
if not self.embeddings:
|
42 |
-
return []
|
43 |
-
|
44 |
-
similarities = np.dot(self.embeddings, query_embedding)
|
45 |
-
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
46 |
-
return [self.documents[i] for i in top_indices]
|
47 |
-
|
48 |
-
# Document processing functions
|
49 |
-
def process_text(text: str) -> List[str]:
|
50 |
-
"""Split text into chunks."""
|
51 |
-
# Simple splitting by sentences (can be improved with better chunking)
|
52 |
-
chunks = text.split('. ')
|
53 |
-
return [chunk + '.' for chunk in chunks if chunk]
|
54 |
-
|
55 |
-
def process_image(image) -> str:
|
56 |
-
"""Extract text from image using OCR."""
|
57 |
-
try:
|
58 |
-
text = pytesseract.image_to_string(image)
|
59 |
-
return text
|
60 |
-
except Exception as e:
|
61 |
-
logger.error(f"Error processing image: {str(e)}")
|
62 |
-
return ""
|
63 |
-
|
64 |
-
def process_pdf(pdf_file) -> str:
|
65 |
-
"""Extract text from PDF."""
|
66 |
-
try:
|
67 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
68 |
-
tmp_file.write(pdf_file.read())
|
69 |
-
tmp_file.flush()
|
70 |
-
|
71 |
-
doc = fitz.open(tmp_file.name)
|
72 |
-
text = ""
|
73 |
-
for page in doc:
|
74 |
-
text += page.get_text()
|
75 |
-
doc.close()
|
76 |
-
os.unlink(tmp_file.name)
|
77 |
-
return text
|
78 |
-
except Exception as e:
|
79 |
-
logger.error(f"Error processing PDF: {str(e)}")
|
80 |
-
return ""
|
81 |
-
|
82 |
-
# Initialize session state
|
83 |
-
if "messages" not in st.session_state:
|
84 |
-
st.session_state.messages = []
|
85 |
-
if "request_timestamps" not in st.session_state:
|
86 |
-
st.session_state.request_timestamps = []
|
87 |
-
if "vector_store" not in st.session_state:
|
88 |
-
st.session_state.vector_store = SimpleVectorStore()
|
89 |
-
|
90 |
-
# Rate limiting configuration
|
91 |
-
RATE_LIMIT_PERIOD = 60
|
92 |
-
MAX_REQUESTS_PER_PERIOD = 30
|
93 |
-
|
94 |
-
def check_rate_limit() -> bool:
|
95 |
-
"""Check if we're within rate limits."""
|
96 |
-
current_time = time.time()
|
97 |
-
st.session_state.request_timestamps = [
|
98 |
-
ts for ts in st.session_state.request_timestamps
|
99 |
-
if current_time - ts < RATE_LIMIT_PERIOD
|
100 |
-
]
|
101 |
-
|
102 |
-
if len(st.session_state.request_timestamps) >= MAX_REQUESTS_PER_PERIOD:
|
103 |
-
return False
|
104 |
-
|
105 |
-
st.session_state.request_timestamps.append(current_time)
|
106 |
-
return True
|
107 |
-
|
108 |
-
def query(payload: Dict[str, Any], api_url: str) -> Optional[Dict[str, Any]]:
|
109 |
-
"""Query the Hugging Face API with error handling and rate limiting."""
|
110 |
-
if not check_rate_limit():
|
111 |
-
raise Exception(f"Rate limit exceeded. Please wait {RATE_LIMIT_PERIOD} seconds.")
|
112 |
-
|
113 |
-
try:
|
114 |
-
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
|
115 |
-
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
|
116 |
-
|
117 |
-
if response.status_code == 429:
|
118 |
-
raise Exception("Too many requests. Please try again later.")
|
119 |
-
|
120 |
-
response.raise_for_status()
|
121 |
-
print(response.request.url)
|
122 |
-
print(response.request.headers)
|
123 |
-
print(response.request.body)
|
124 |
-
print(response)
|
125 |
-
return response.json()
|
126 |
-
except requests.exceptions.JSONDecodeError as e:
|
127 |
-
logger.error(f"API request failed: {str(e)}")
|
128 |
-
raise
|
129 |
-
|
130 |
-
# Enhanced response validation
|
131 |
-
def process_response(response: Dict[str, Any]) -> str:
|
132 |
-
if not isinstance(response, list) or not response:
|
133 |
-
raise ValueError("Invalid response format")
|
134 |
-
|
135 |
-
if 'generated_text' not in response[0]:
|
136 |
-
raise ValueError("Unexpected response structure")
|
137 |
-
|
138 |
-
text = response[0]['generated_text'].strip()
|
139 |
|
140 |
# Page configuration
|
141 |
st.set_page_config(
|
142 |
-
page_title="
|
143 |
page_icon="🤖",
|
144 |
-
layout="
|
145 |
)
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
st.
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
"
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
|
179 |
-
for file in uploaded_files:
|
180 |
-
try:
|
181 |
-
if file.type == "application/pdf":
|
182 |
-
text = process_pdf(file)
|
183 |
-
elif file.type.startswith("image/"):
|
184 |
-
image = Image.open(file)
|
185 |
-
text = process_image(image)
|
186 |
-
else: # text files
|
187 |
-
text = file.getvalue().decode()
|
188 |
-
|
189 |
-
chunks = process_text(text)
|
190 |
-
for chunk in chunks:
|
191 |
-
embedding = embedding_model.encode(chunk)
|
192 |
-
st.session_state.vector_store.add_document(chunk, embedding)
|
193 |
-
|
194 |
-
st.sidebar.success(f"Successfully processed {file.name}")
|
195 |
-
except Exception as e:
|
196 |
-
st.sidebar.error(f"Error processing {file.name}: {str(e)}")
|
197 |
-
|
198 |
-
# Main chat interface
|
199 |
-
st.title("🤖 RAG-Enabled DeepSeek Chatbot")
|
200 |
-
st.caption("Upload documents in the sidebar to enhance the chatbot's knowledge")
|
201 |
-
|
202 |
-
# Display chat history
|
203 |
-
for message in st.session_state.messages:
|
204 |
-
with st.chat_message(message["role"]):
|
205 |
-
st.markdown(message["content"])
|
206 |
-
|
207 |
-
# Handle user input
|
208 |
-
if prompt := st.chat_input("Type your message..."):
|
209 |
-
# Display user message
|
210 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
211 |
-
with st.chat_message("user"):
|
212 |
-
st.markdown(prompt)
|
213 |
-
|
214 |
try:
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
"
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
}
|
243 |
-
}
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
st.error(f"Error: {str(e)}")
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import logging
|
4 |
+
from typing import Optional, Dict, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Configure logging
|
7 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
+
# Constants
|
11 |
+
DEFAULT_SYSTEM_PROMPT = """You are a friendly Assistant. Provide clear, accurate, and brief answers.
|
12 |
+
Keep responses polite, engaging, and to the point. If unsure, politely suggest alternatives."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
MODEL_OPTIONS = ["deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"]
|
15 |
+
API_BASE_URL = "https://api-inference.huggingface.co/models/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Page configuration
|
18 |
st.set_page_config(
|
19 |
+
page_title="DeepSeek-AI R1 (32B)",
|
20 |
page_icon="🤖",
|
21 |
+
layout="centered"
|
22 |
)
|
23 |
|
24 |
+
def initialize_session_state():
|
25 |
+
"""Initialize all session state variables"""
|
26 |
+
if "messages" not in st.session_state:
|
27 |
+
st.session_state.messages = []
|
28 |
+
if "api_failures" not in st.session_state:
|
29 |
+
st.session_state.api_failures = 0
|
30 |
+
|
31 |
+
def configure_sidebar() -> Dict[str, Any]:
|
32 |
+
"""Create sidebar components and return settings"""
|
33 |
+
with st.sidebar:
|
34 |
+
st.header("Model Configuration")
|
35 |
+
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
|
36 |
+
|
37 |
+
return {
|
38 |
+
"model": st.selectbox("Select Model", MODEL_OPTIONS, index=0),
|
39 |
+
"system_message": st.text_area(
|
40 |
+
"System Message",
|
41 |
+
value=DEFAULT_SYSTEM_PROMPT,
|
42 |
+
height=100
|
43 |
+
),
|
44 |
+
"max_tokens": st.slider("Max Tokens", 10, 4000, 100),
|
45 |
+
"temperature": st.slider("Temperature", 0.1, 4.0, 0.3),
|
46 |
+
"top_p": st.slider("Top-p", 0.1, 1.0, 0.6)
|
47 |
+
}
|
48 |
+
|
49 |
+
def format_deepseek_prompt(system_message: str, user_input: str) -> str:
|
50 |
+
"""Format the prompt according to DeepSeek's required structure"""
|
51 |
+
return f"""<|beginofutterance|>System: {system_message}
|
52 |
+
<|endofutterance|>
|
53 |
+
<|beginofutterance|>User: {user_input}<|endofutterance|>
|
54 |
+
<|beginofutterance|>Assistant:"""
|
55 |
|
56 |
+
def query_hf_api(payload: Dict[str, Any], api_url: str) -> Optional[Dict[str, Any]]:
|
57 |
+
"""Handle API requests with improved error handling"""
|
58 |
+
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
try:
|
61 |
+
response = requests.post(
|
62 |
+
api_url,
|
63 |
+
headers=headers,
|
64 |
+
json=payload,
|
65 |
+
timeout=30
|
66 |
+
)
|
67 |
+
response.raise_for_status()
|
68 |
+
return response.json()
|
69 |
+
except requests.exceptions.HTTPError as e:
|
70 |
+
logger.error(f"HTTP Error: {e.response.status_code} - {e.response.text}")
|
71 |
+
st.error(f"API Error: {e.response.status_code} - {e.response.text[:200]}")
|
72 |
+
except requests.exceptions.RequestException as e:
|
73 |
+
logger.error(f"Request failed: {str(e)}")
|
74 |
+
st.error("Connection error. Please check your internet connection.")
|
75 |
+
return None
|
76 |
+
|
77 |
+
def handle_chat_interaction(settings: Dict[str, Any]):
|
78 |
+
"""Manage chat input/output and API communication"""
|
79 |
+
if prompt := st.chat_input("Type your message..."):
|
80 |
+
# Add user message to history
|
81 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
82 |
+
|
83 |
+
with st.chat_message("user"):
|
84 |
+
st.markdown(prompt)
|
85 |
|
86 |
+
try:
|
87 |
+
with st.spinner("Generating response..."):
|
88 |
+
# Format prompt according to model requirements
|
89 |
+
full_prompt = format_deepseek_prompt(
|
90 |
+
system_message=settings["system_message"],
|
91 |
+
user_input=prompt
|
92 |
+
)
|
93 |
+
|
94 |
+
payload = {
|
95 |
+
"inputs": full_prompt,
|
96 |
+
"parameters": {
|
97 |
+
"max_new_tokens": settings["max_tokens"],
|
98 |
+
"temperature": settings["temperature"],
|
99 |
+
"top_p": settings["top_p"]
|
100 |
+
}
|
101 |
}
|
|
|
102 |
|
103 |
+
api_url = f"{API_BASE_URL}{settings['model']}"
|
104 |
+
output = query_hf_api(payload, api_url)
|
105 |
+
|
106 |
+
if output and isinstance(output, list):
|
107 |
+
if 'generated_text' in output[0]:
|
108 |
+
response_text = output[0]['generated_text'].strip()
|
109 |
+
# Remove any remaining special tokens
|
110 |
+
response_text = response_text.replace("<|endofutterance|>", "").strip()
|
111 |
+
|
112 |
+
# Display and store response
|
113 |
+
with st.chat_message("assistant"):
|
114 |
+
st.markdown(response_text)
|
115 |
+
st.session_state.messages.append(
|
116 |
+
{"role": "assistant", "content": response_text}
|
117 |
+
)
|
118 |
+
return
|
119 |
+
|
120 |
+
# Handle failed responses
|
121 |
+
st.session_state.api_failures += 1
|
122 |
+
if st.session_state.api_failures > 2:
|
123 |
+
st.error("Persistent API failures. Please check your API token and model selection.")
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
logger.error(f"Unexpected error: {str(e)}", exc_info=True)
|
127 |
+
st.error("An unexpected error occurred. Please try again.")
|
128 |
+
|
129 |
+
def display_chat_history():
|
130 |
+
"""Render chat message history"""
|
131 |
+
for message in st.session_state.messages:
|
132 |
+
with st.chat_message(message["role"]):
|
133 |
+
st.markdown(message["content"])
|
134 |
+
|
135 |
+
def main():
|
136 |
+
"""Main application flow"""
|
137 |
+
initialize_session_state()
|
138 |
+
settings = configure_sidebar()
|
139 |
+
|
140 |
+
st.title("🤖 DeepSeek Chatbot")
|
141 |
+
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
|
142 |
+
|
143 |
+
display_chat_history()
|
144 |
+
handle_chat_interaction(settings)
|
145 |
|
146 |
+
if __name__ == "__main__":
|
147 |
+
main()
|
|