Update audio_processing.py
Browse files- audio_processing.py +189 -41
audio_processing.py
CHANGED
@@ -1,48 +1,196 @@
|
|
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
return detected_lang
|
15 |
-
|
16 |
-
def process_long_audio(waveform, sampling_rate, task="transcribe", language=None):
|
17 |
-
processor = get_processor()
|
18 |
-
model = get_model()
|
19 |
-
device = get_device()
|
20 |
-
|
21 |
-
input_length = waveform.shape[1]
|
22 |
-
chunk_length = int(CHUNK_LENGTH_S * sampling_rate)
|
23 |
-
chunks = [waveform[:, i:i + chunk_length] for i in range(0, input_length, chunk_length)]
|
24 |
-
|
25 |
-
results = []
|
26 |
-
for chunk in chunks:
|
27 |
-
input_features = processor(chunk[0], sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
with torch.no_grad():
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
import torch
|
3 |
+
import torchaudio
|
4 |
+
import numpy as np
|
5 |
+
from transformers import (
|
6 |
+
Wav2Vec2ForSequenceClassification,
|
7 |
+
AutoFeatureExtractor,
|
8 |
+
Wav2Vec2ForCTC,
|
9 |
+
AutoProcessor,
|
10 |
+
AutoTokenizer,
|
11 |
+
AutoModelForSeq2SeqLM
|
12 |
+
)
|
13 |
+
import logging
|
14 |
+
from difflib import SequenceMatcher
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
class AudioProcessor:
|
20 |
+
def __init__(self, chunk_size=5, overlap=1, sample_rate=16000):
|
21 |
+
self.chunk_size = chunk_size
|
22 |
+
self.overlap = overlap
|
23 |
+
self.sample_rate = sample_rate
|
24 |
+
self.previous_text = ""
|
25 |
+
self.previous_lang = None
|
26 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
|
28 |
+
def load_models(self):
|
29 |
+
"""Load all required models"""
|
30 |
+
logger.info("Loading MMS models...")
|
31 |
+
|
32 |
+
# Language identification model
|
33 |
+
lid_processor = AutoFeatureExtractor.from_pretrained("facebook/mms-lid-256")
|
34 |
+
lid_model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/mms-lid-256")
|
35 |
+
|
36 |
+
# Transcription model
|
37 |
+
mms_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
38 |
+
mms_model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all")
|
39 |
+
|
40 |
+
# Translation model
|
41 |
+
translation_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
42 |
+
translation_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
43 |
+
|
44 |
+
return {
|
45 |
+
'lid': (lid_model, lid_processor),
|
46 |
+
'mms': (mms_model, mms_processor),
|
47 |
+
'translation': (translation_model, translation_tokenizer)
|
48 |
+
}
|
49 |
+
|
50 |
+
def identify_language(self, audio_chunk, models):
|
51 |
+
"""Identify language of audio chunk"""
|
52 |
+
lid_model, lid_processor = models['lid']
|
53 |
+
inputs = lid_processor(audio_chunk, sampling_rate=16000, return_tensors="pt")
|
54 |
+
|
55 |
with torch.no_grad():
|
56 |
+
outputs = lid_model(inputs.input_values.to(self.device)).logits
|
57 |
+
lang_id = torch.argmax(outputs, dim=-1)[0].item()
|
58 |
+
detected_lang = lid_model.config.id2label[lang_id]
|
59 |
+
|
60 |
+
return detected_lang
|
61 |
|
62 |
+
def transcribe_chunk(self, audio_chunk, language, models):
|
63 |
+
"""Transcribe audio chunk"""
|
64 |
+
mms_model, mms_processor = models['mms']
|
65 |
+
|
66 |
+
mms_processor.tokenizer.set_target_lang(language)
|
67 |
+
mms_model.load_adapter(language)
|
68 |
+
|
69 |
+
inputs = mms_processor(audio_chunk, sampling_rate=16000, return_tensors="pt")
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = mms_model(inputs.input_values.to(self.device)).logits
|
73 |
+
ids = torch.argmax(outputs, dim=-1)[0]
|
74 |
+
transcription = mms_processor.decode(ids)
|
75 |
+
|
76 |
+
return transcription
|
77 |
|
78 |
+
def translate_text(self, text, models):
|
79 |
+
"""Translate text to English"""
|
80 |
+
translation_model, translation_tokenizer = models['translation']
|
81 |
+
|
82 |
+
inputs = translation_tokenizer(text, return_tensors="pt")
|
83 |
+
inputs = inputs.to(self.device)
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
outputs = translation_model.generate(
|
87 |
+
**inputs,
|
88 |
+
forced_bos_token_id=translation_tokenizer.convert_tokens_to_ids("eng_Latn"),
|
89 |
+
max_length=100
|
90 |
+
)
|
91 |
+
translation = translation_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
92 |
+
|
93 |
+
return translation
|
94 |
+
|
95 |
+
def process_audio(self, audio_path, translate=False):
|
96 |
+
"""Main processing function"""
|
97 |
+
try:
|
98 |
+
# Load audio
|
99 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
100 |
+
if waveform.shape[0] > 1:
|
101 |
+
waveform = torch.mean(waveform, dim=0)
|
102 |
+
|
103 |
+
# Resample if necessary
|
104 |
+
if sample_rate != self.sample_rate:
|
105 |
+
waveform = torchaudio.transforms.Resample(sample_rate, self.sample_rate)(waveform)
|
106 |
|
107 |
+
# Load models
|
108 |
+
models = self.load_models()
|
109 |
+
|
110 |
+
# Process in chunks
|
111 |
+
chunk_samples = int(self.chunk_size * self.sample_rate)
|
112 |
+
overlap_samples = int(self.overlap * self.sample_rate)
|
113 |
+
|
114 |
+
segments = []
|
115 |
+
language_segments = []
|
116 |
+
|
117 |
+
for i in range(0, len(waveform), chunk_samples - overlap_samples):
|
118 |
+
chunk = waveform[i:i + chunk_samples]
|
119 |
+
if len(chunk) < chunk_samples:
|
120 |
+
chunk = torch.nn.functional.pad(chunk, (0, chunk_samples - len(chunk)))
|
121 |
+
|
122 |
+
# Process chunk
|
123 |
+
start_time = i / self.sample_rate
|
124 |
+
end_time = (i + len(chunk)) / self.sample_rate
|
125 |
+
|
126 |
+
# Identify language
|
127 |
+
language = self.identify_language(chunk, models)
|
128 |
+
|
129 |
+
# Record language segment
|
130 |
+
language_segments.append({
|
131 |
+
"language": language,
|
132 |
+
"start": start_time,
|
133 |
+
"end": end_time
|
134 |
+
})
|
135 |
+
|
136 |
+
# Transcribe
|
137 |
+
transcription = self.transcribe_chunk(chunk, language, models)
|
138 |
+
|
139 |
+
segment = {
|
140 |
+
"start": start_time,
|
141 |
+
"end": end_time,
|
142 |
+
"language": language,
|
143 |
+
"text": transcription,
|
144 |
+
"speaker": "Speaker" # Simple speaker assignment
|
145 |
+
}
|
146 |
+
|
147 |
+
if translate:
|
148 |
+
translation = self.translate_text(transcription, models)
|
149 |
+
segment["translated"] = translation
|
150 |
+
|
151 |
+
segments.append(segment)
|
152 |
+
|
153 |
+
# Clean up GPU memory
|
154 |
+
torch.cuda.empty_cache()
|
155 |
+
gc.collect()
|
156 |
+
|
157 |
+
# Merge nearby segments
|
158 |
+
merged_segments = self.merge_segments(segments)
|
159 |
+
|
160 |
+
return language_segments, merged_segments
|
161 |
|
162 |
+
except Exception as e:
|
163 |
+
logger.error(f"Error processing audio: {str(e)}")
|
164 |
+
raise
|
165 |
+
|
166 |
+
def merge_segments(self, segments, time_threshold=0.5, similarity_threshold=0.7):
|
167 |
+
"""Merge similar nearby segments"""
|
168 |
+
if not segments:
|
169 |
+
return segments
|
170 |
+
|
171 |
+
merged = []
|
172 |
+
current = segments[0]
|
173 |
+
|
174 |
+
for next_segment in segments[1:]:
|
175 |
+
if (next_segment['start'] - current['end'] <= time_threshold and
|
176 |
+
current['language'] == next_segment['language']):
|
177 |
+
|
178 |
+
# Check text similarity
|
179 |
+
matcher = SequenceMatcher(None, current['text'], next_segment['text'])
|
180 |
+
similarity = matcher.ratio()
|
181 |
+
|
182 |
+
if similarity > similarity_threshold:
|
183 |
+
# Merge segments
|
184 |
+
current['end'] = next_segment['end']
|
185 |
+
current['text'] = current['text'] + ' ' + next_segment['text']
|
186 |
+
if 'translated' in current and 'translated' in next_segment:
|
187 |
+
current['translated'] = current['translated'] + ' ' + next_segment['translated']
|
188 |
+
else:
|
189 |
+
merged.append(current)
|
190 |
+
current = next_segment
|
191 |
+
else:
|
192 |
+
merged.append(current)
|
193 |
+
current = next_segment
|
194 |
+
|
195 |
+
merged.append(current)
|
196 |
+
return merged
|