Spaces:
Runtime error
Runtime error
asd
Browse files
app.py
CHANGED
@@ -118,6 +118,85 @@
|
|
118 |
# # Launch the Gradio app
|
119 |
# interface.launch(debug=True)
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
import gradio as gr
|
122 |
from openai import OpenAI
|
123 |
import os
|
@@ -134,7 +213,7 @@ client = OpenAI(api_key=api_key)
|
|
134 |
finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"
|
135 |
|
136 |
# Load the AI detection model
|
137 |
-
pipe = pipeline("text-classification", model="
|
138 |
|
139 |
# Define the function to get predictions
|
140 |
def get_prediction(text):
|
@@ -195,4 +274,4 @@ interface = gr.Interface(
|
|
195 |
)
|
196 |
|
197 |
# Launch the Gradio app
|
198 |
-
interface.launch(debug=True)
|
|
|
118 |
# # Launch the Gradio app
|
119 |
# interface.launch(debug=True)
|
120 |
|
121 |
+
# import gradio as gr
|
122 |
+
# from openai import OpenAI
|
123 |
+
# import os
|
124 |
+
# import re
|
125 |
+
# from transformers import pipeline
|
126 |
+
|
127 |
+
# # define the openai key
|
128 |
+
# api_key = "sk-proj-UCoZZMs4MyfyHwXdHjT8T3BlbkFJjYkSZyPfIPNqXfXwoekm"
|
129 |
+
|
130 |
+
# # make an instance of the openai client
|
131 |
+
# client = OpenAI(api_key=api_key)
|
132 |
+
|
133 |
+
# # finetuned model instance
|
134 |
+
# finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"
|
135 |
+
|
136 |
+
# # Load the AI detection model
|
137 |
+
# pipe = pipeline("text-classification", model="tommyliphys/ai-detector-distilbert")
|
138 |
+
|
139 |
+
# # Define the function to get predictions
|
140 |
+
# def get_prediction(text):
|
141 |
+
# return pipe(text)[0]
|
142 |
+
|
143 |
+
# # Function to clean the text
|
144 |
+
# def clean_text(text):
|
145 |
+
# # Remove double asterisks
|
146 |
+
# text = re.sub(r'\*\*', '', text)
|
147 |
+
# # Remove double hash symbols
|
148 |
+
# text = re.sub(r'##', '', text)
|
149 |
+
# return text
|
150 |
+
|
151 |
+
# # function to humanize the text
|
152 |
+
# def humanize_text(AI_text):
|
153 |
+
# """Humanizes the provided AI text using the fine-tuned model."""
|
154 |
+
# humanized_text = AI_text
|
155 |
+
# attempts = 0
|
156 |
+
# max_attempts = 10
|
157 |
+
|
158 |
+
# while attempts < max_attempts:
|
159 |
+
# response = client.chat.completions.create(
|
160 |
+
# model=finetuned_model,
|
161 |
+
# temperature=0.90,
|
162 |
+
# messages=[
|
163 |
+
# {"role": "system", "content": """
|
164 |
+
# You are a text humanizer.
|
165 |
+
# You humanize AI generated text.
|
166 |
+
# The text must appear like humanly written.
|
167 |
+
# THE INPUT AND THE OUTPUT TEXT SHOULD HAVE THE SAME FORMAT.
|
168 |
+
# THE HEADINGS AND THE BULLETS IN THE INPUT SHOULD REMAIN IN PLACE"""},
|
169 |
+
# {"role": "user", "content": "THE LANGUAGE OF THE INPUT AND THE OUTPUT MUST BE SAME. THE SENTENCES SHOULD NOT BE SHORT LENGTH - THEY SHOULD BE SAME AS IN THE INPUT. ALSO THE PARAGRAPHS SHOULD NOT BE SHORT EITHER - PARAGRAPHS MUST HAVE THE SAME LENGTH"},
|
170 |
+
# {"role": "user", "content": f"Humanize the text. Keep the output format i.e. the bullets and the headings as it is and dont use the list of words that are not permissible. \nTEXT: {humanized_text}"}
|
171 |
+
# ]
|
172 |
+
# )
|
173 |
+
|
174 |
+
# humanized_text = response.choices[0].message.content.strip()
|
175 |
+
|
176 |
+
# # Check if the humanized text is still detected as AI
|
177 |
+
# prediction = get_prediction(humanized_text)
|
178 |
+
|
179 |
+
# if prediction['label'] == 'human' and prediction['score'] > 0.9:
|
180 |
+
# break
|
181 |
+
|
182 |
+
# attempts += 1
|
183 |
+
|
184 |
+
# # Clean the humanized text
|
185 |
+
# cleaned_text = clean_text(humanized_text)
|
186 |
+
# return cleaned_text
|
187 |
+
|
188 |
+
# # Gradio interface definition
|
189 |
+
# interface = gr.Interface(
|
190 |
+
# fn=humanize_text,
|
191 |
+
# inputs="textbox",
|
192 |
+
# outputs="textbox",
|
193 |
+
# title="AI Text Humanizer: NoaiGPT.com Demo",
|
194 |
+
# description="Enter AI-generated text and get a human-written version.",
|
195 |
+
# )
|
196 |
+
|
197 |
+
# # Launch the Gradio app
|
198 |
+
# interface.launch(debug=True)
|
199 |
+
|
200 |
import gradio as gr
|
201 |
from openai import OpenAI
|
202 |
import os
|
|
|
213 |
finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"
|
214 |
|
215 |
# Load the AI detection model
|
216 |
+
pipe = pipeline("text-classification", model="andreas122001/roberta-mixed-detector")
|
217 |
|
218 |
# Define the function to get predictions
|
219 |
def get_prediction(text):
|
|
|
274 |
)
|
275 |
|
276 |
# Launch the Gradio app
|
277 |
+
interface.launch(debug=True)
|