asd
Browse files
app.py
CHANGED
@@ -1,40 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import spaces
|
|
|
4 |
|
5 |
device = "cuda"
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained("NoaiGPT/777")
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained("NoaiGPT/777").to(device)
|
9 |
|
|
|
|
|
|
|
10 |
@spaces.GPU
|
11 |
def generate_title(text):
|
12 |
input_ids = tokenizer(f'paraphraser: {text}', return_tensors="pt", padding="longest", truncation=True, max_length=64).input_ids.to(device)
|
13 |
outputs = model.generate(
|
14 |
input_ids,
|
15 |
-
num_beams=8,
|
16 |
num_beam_groups=4,
|
17 |
-
num_return_sequences=6,
|
18 |
-
repetition_penalty=12.0,
|
19 |
-
diversity_penalty=4.0,
|
20 |
-
no_repeat_ngram_size=3,
|
21 |
-
temperature=1.1,
|
22 |
-
top_k=50,
|
23 |
-
top_p=0.95,
|
24 |
max_length=64
|
25 |
)
|
26 |
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def gradio_generate_title(text):
|
29 |
-
|
30 |
-
return "\n\n".join(titles)
|
31 |
|
32 |
iface = gr.Interface(
|
33 |
fn=gradio_generate_title,
|
34 |
-
inputs=gr.Textbox(lines=
|
35 |
-
outputs=gr.Textbox(lines=
|
36 |
-
title="Diverse
|
37 |
-
description="Generate multiple diverse
|
38 |
)
|
39 |
|
40 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import spaces
|
4 |
+
from sentence_splitter import SentenceSplitter
|
5 |
|
6 |
device = "cuda"
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained("NoaiGPT/777")
|
9 |
model = AutoModelForSeq2SeqLM.from_pretrained("NoaiGPT/777").to(device)
|
10 |
|
11 |
+
# Initialize the sentence splitter
|
12 |
+
splitter = SentenceSplitter(language='en')
|
13 |
+
|
14 |
@spaces.GPU
|
15 |
def generate_title(text):
|
16 |
input_ids = tokenizer(f'paraphraser: {text}', return_tensors="pt", padding="longest", truncation=True, max_length=64).input_ids.to(device)
|
17 |
outputs = model.generate(
|
18 |
input_ids,
|
19 |
+
num_beams=8,
|
20 |
num_beam_groups=4,
|
21 |
+
num_return_sequences=6,
|
22 |
+
repetition_penalty=12.0,
|
23 |
+
diversity_penalty=4.0,
|
24 |
+
no_repeat_ngram_size=3,
|
25 |
+
temperature=1.1,
|
26 |
+
top_k=50,
|
27 |
+
top_p=0.95,
|
28 |
max_length=64
|
29 |
)
|
30 |
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
31 |
|
32 |
+
def process_text(text):
|
33 |
+
paragraphs = text.split('\n\n')
|
34 |
+
results = []
|
35 |
+
for paragraph in paragraphs:
|
36 |
+
sentences = splitter.split(paragraph)
|
37 |
+
paragraph_results = []
|
38 |
+
for sentence in sentences:
|
39 |
+
titles = generate_title(sentence)
|
40 |
+
paragraph_results.append(f"Original: {sentence}\nParaphrases:\n" + "\n".join(titles))
|
41 |
+
results.append("\n\n".join(paragraph_results))
|
42 |
+
return "\n\n---\n\n".join(results)
|
43 |
+
|
44 |
def gradio_generate_title(text):
|
45 |
+
return process_text(text)
|
|
|
46 |
|
47 |
iface = gr.Interface(
|
48 |
fn=gradio_generate_title,
|
49 |
+
inputs=gr.Textbox(lines=10, label="Input Text"),
|
50 |
+
outputs=gr.Textbox(lines=20, label="Generated Paraphrases"),
|
51 |
+
title="Diverse Paraphrase Generator",
|
52 |
+
description="Generate multiple diverse paraphrases for each sentence in the input text using NoaiGPT/777 model."
|
53 |
)
|
54 |
|
55 |
iface.launch()
|