Spaces:
Running
Running
File size: 1,921 Bytes
1307964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
const fetch = require('node-fetch').default;
const { SECRET_KEYS, readSecret } = require('../endpoints/secrets');
/**
* Gets the vector for the given text from gecko model
* @param {string[]} texts - The array of texts to get the vector for
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
* @returns {Promise<number[][]>} - The array of vectors for the texts
*/
async function getMakerSuiteBatchVector(texts, directories) {
const promises = texts.map(text => getMakerSuiteVector(text, directories));
const vectors = await Promise.all(promises);
return vectors;
}
/**
* Gets the vector for the given text from PaLM gecko model
* @param {string} text - The text to get the vector for
* @param {import('../users').UserDirectoryList} directories - The directories object for the user
* @returns {Promise<number[]>} - The vector for the text
*/
async function getMakerSuiteVector(text, directories) {
const key = readSecret(directories, SECRET_KEYS.MAKERSUITE);
if (!key) {
console.log('No Google AI Studio key found');
throw new Error('No Google AI Studio key found');
}
const response = await fetch(`https://generativelanguage.googleapis.com/v1beta/models/embedding-gecko-001:embedText?key=${key}`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
text: text,
}),
});
if (!response.ok) {
const text = await response.text();
console.log('Google AI Studio request failed', response.statusText, text);
throw new Error('Google AI Studio request failed');
}
const data = await response.json();
// Access the "value" dictionary
const vector = data.embedding.value;
return vector;
}
module.exports = {
getMakerSuiteVector,
getMakerSuiteBatchVector,
};
|