Spaces:
Running
Running
import { | |
eventSource, | |
event_types, | |
extension_prompt_types, | |
extension_prompt_roles, | |
getCurrentChatId, | |
getRequestHeaders, | |
is_send_press, | |
saveSettingsDebounced, | |
setExtensionPrompt, | |
substituteParams, | |
generateRaw, | |
substituteParamsExtended, | |
} from '../../../script.js'; | |
import { | |
ModuleWorkerWrapper, | |
extension_settings, | |
getContext, | |
modules, | |
renderExtensionTemplateAsync, | |
doExtrasFetch, getApiUrl, | |
} from '../../extensions.js'; | |
import { collapseNewlines, registerDebugFunction } from '../../power-user.js'; | |
import { SECRET_KEYS, secret_state, writeSecret } from '../../secrets.js'; | |
import { getDataBankAttachments, getDataBankAttachmentsForSource, getFileAttachment } from '../../chats.js'; | |
import { debounce, getStringHash as calculateHash, waitUntilCondition, onlyUnique, splitRecursive, trimToStartSentence, trimToEndSentence } from '../../utils.js'; | |
import { debounce_timeout } from '../../constants.js'; | |
import { getSortedEntries } from '../../world-info.js'; | |
import { textgen_types, textgenerationwebui_settings } from '../../textgen-settings.js'; | |
import { SlashCommandParser } from '../../slash-commands/SlashCommandParser.js'; | |
import { SlashCommand } from '../../slash-commands/SlashCommand.js'; | |
import { ARGUMENT_TYPE, SlashCommandArgument, SlashCommandNamedArgument } from '../../slash-commands/SlashCommandArgument.js'; | |
import { callGenericPopup, POPUP_RESULT, POPUP_TYPE } from '../../popup.js'; | |
import { generateWebLlmChatPrompt, isWebLlmSupported } from '../shared.js'; | |
/** | |
* @typedef {object} HashedMessage | |
* @property {string} text - The hashed message text | |
*/ | |
const MODULE_NAME = 'vectors'; | |
export const EXTENSION_PROMPT_TAG = '3_vectors'; | |
export const EXTENSION_PROMPT_TAG_DB = '4_vectors_data_bank'; | |
const settings = { | |
// For both | |
source: 'transformers', | |
include_wi: false, | |
togetherai_model: 'togethercomputer/m2-bert-80M-32k-retrieval', | |
openai_model: 'text-embedding-ada-002', | |
cohere_model: 'embed-english-v3.0', | |
ollama_model: 'mxbai-embed-large', | |
ollama_keep: false, | |
vllm_model: '', | |
summarize: false, | |
summarize_sent: false, | |
summary_source: 'main', | |
summary_prompt: 'Pause your roleplay. Summarize the most important parts of the message. Limit yourself to 250 words or less. Your response should include nothing but the summary.', | |
force_chunk_delimiter: '', | |
// For chats | |
enabled_chats: false, | |
template: 'Past events:\n{{text}}', | |
depth: 2, | |
position: extension_prompt_types.IN_PROMPT, | |
protect: 5, | |
insert: 3, | |
query: 2, | |
message_chunk_size: 400, | |
score_threshold: 0.25, | |
// For files | |
enabled_files: false, | |
translate_files: false, | |
size_threshold: 10, | |
chunk_size: 5000, | |
chunk_count: 2, | |
overlap_percent: 0, | |
// For Data Bank | |
size_threshold_db: 5, | |
chunk_size_db: 2500, | |
chunk_count_db: 5, | |
overlap_percent_db: 0, | |
file_template_db: 'Related information:\n{{text}}', | |
file_position_db: extension_prompt_types.IN_PROMPT, | |
file_depth_db: 4, | |
file_depth_role_db: extension_prompt_roles.SYSTEM, | |
// For World Info | |
enabled_world_info: false, | |
enabled_for_all: false, | |
max_entries: 5, | |
}; | |
const moduleWorker = new ModuleWorkerWrapper(synchronizeChat); | |
/** | |
* Gets the Collection ID for a file embedded in the chat. | |
* @param {string} fileUrl URL of the file | |
* @returns {string} Collection ID | |
*/ | |
function getFileCollectionId(fileUrl) { | |
return `file_${getStringHash(fileUrl)}`; | |
} | |
async function onVectorizeAllClick() { | |
try { | |
if (!settings.enabled_chats) { | |
return; | |
} | |
const chatId = getCurrentChatId(); | |
if (!chatId) { | |
toastr.info('No chat selected', 'Vectorization aborted'); | |
return; | |
} | |
const batchSize = 5; | |
const elapsedLog = []; | |
let finished = false; | |
$('#vectorize_progress').show(); | |
$('#vectorize_progress_percent').text('0'); | |
$('#vectorize_progress_eta').text('...'); | |
while (!finished) { | |
if (is_send_press) { | |
toastr.info('Message generation is in progress.', 'Vectorization aborted'); | |
throw new Error('Message generation is in progress.'); | |
} | |
const startTime = Date.now(); | |
const remaining = await synchronizeChat(batchSize); | |
const elapsed = Date.now() - startTime; | |
elapsedLog.push(elapsed); | |
finished = remaining <= 0; | |
const total = getContext().chat.length; | |
const processed = total - remaining; | |
const processedPercent = Math.round((processed / total) * 100); // percentage of the work done | |
const lastElapsed = elapsedLog.slice(-5); // last 5 elapsed times | |
const averageElapsed = lastElapsed.reduce((a, b) => a + b, 0) / lastElapsed.length; // average time needed to process one item | |
const pace = averageElapsed / batchSize; // time needed to process one item | |
const remainingTime = Math.round(pace * remaining / 1000); | |
$('#vectorize_progress_percent').text(processedPercent); | |
$('#vectorize_progress_eta').text(remainingTime); | |
if (chatId !== getCurrentChatId()) { | |
throw new Error('Chat changed'); | |
} | |
} | |
} catch (error) { | |
console.error('Vectors: Failed to vectorize all', error); | |
} finally { | |
$('#vectorize_progress').hide(); | |
} | |
} | |
let syncBlocked = false; | |
/** | |
* Gets the chunk delimiters for splitting text. | |
* @returns {string[]} Array of chunk delimiters | |
*/ | |
function getChunkDelimiters() { | |
const delimiters = ['\n\n', '\n', ' ', '']; | |
if (settings.force_chunk_delimiter) { | |
delimiters.unshift(settings.force_chunk_delimiter); | |
} | |
return delimiters; | |
} | |
/** | |
* Splits messages into chunks before inserting them into the vector index. | |
* @param {object[]} items Array of vector items | |
* @returns {object[]} Array of vector items (possibly chunked) | |
*/ | |
function splitByChunks(items) { | |
if (settings.message_chunk_size <= 0) { | |
return items; | |
} | |
const chunkedItems = []; | |
for (const item of items) { | |
const chunks = splitRecursive(item.text, settings.message_chunk_size, getChunkDelimiters()); | |
for (const chunk of chunks) { | |
const chunkedItem = { ...item, text: chunk }; | |
chunkedItems.push(chunkedItem); | |
} | |
} | |
return chunkedItems; | |
} | |
/** | |
* Summarizes messages using the Extras API method. | |
* @param {HashedMessage[]} hashedMessages Array of hashed messages | |
* @returns {Promise<HashedMessage[]>} Summarized messages | |
*/ | |
async function summarizeExtra(hashedMessages) { | |
for (const element of hashedMessages) { | |
try { | |
const url = new URL(getApiUrl()); | |
url.pathname = '/api/summarize'; | |
const apiResult = await doExtrasFetch(url, { | |
method: 'POST', | |
headers: { | |
'Content-Type': 'application/json', | |
'Bypass-Tunnel-Reminder': 'bypass', | |
}, | |
body: JSON.stringify({ | |
text: element.text, | |
params: {}, | |
}), | |
}); | |
if (apiResult.ok) { | |
const data = await apiResult.json(); | |
element.text = data.summary; | |
} | |
} | |
catch (error) { | |
console.log(error); | |
} | |
} | |
return hashedMessages; | |
} | |
/** | |
* Summarizes messages using the main API method. | |
* @param {HashedMessage[]} hashedMessages Array of hashed messages | |
* @returns {Promise<HashedMessage[]>} Summarized messages | |
*/ | |
async function summarizeMain(hashedMessages) { | |
for (const element of hashedMessages) { | |
element.text = await generateRaw(element.text, '', false, false, settings.summary_prompt); | |
} | |
return hashedMessages; | |
} | |
/** | |
* Summarizes messages using WebLLM. | |
* @param {HashedMessage[]} hashedMessages Array of hashed messages | |
* @returns {Promise<HashedMessage[]>} Summarized messages | |
*/ | |
async function summarizeWebLLM(hashedMessages) { | |
if (!isWebLlmSupported()) { | |
console.warn('Vectors: WebLLM is not supported'); | |
return hashedMessages; | |
} | |
for (const element of hashedMessages) { | |
const messages = [{ role:'system', content: settings.summary_prompt }, { role:'user', content: element.text }]; | |
element.text = await generateWebLlmChatPrompt(messages); | |
} | |
return hashedMessages; | |
} | |
/** | |
* Summarizes messages using the chosen method. | |
* @param {HashedMessage[]} hashedMessages Array of hashed messages | |
* @param {string} endpoint Type of endpoint to use | |
* @returns {Promise<HashedMessage[]>} Summarized messages | |
*/ | |
async function summarize(hashedMessages, endpoint = 'main') { | |
switch (endpoint) { | |
case 'main': | |
return await summarizeMain(hashedMessages); | |
case 'extras': | |
return await summarizeExtra(hashedMessages); | |
case 'webllm': | |
return await summarizeWebLLM(hashedMessages); | |
default: | |
console.error('Unsupported endpoint', endpoint); | |
} | |
} | |
async function synchronizeChat(batchSize = 5) { | |
if (!settings.enabled_chats) { | |
return -1; | |
} | |
try { | |
await waitUntilCondition(() => !syncBlocked && !is_send_press, 1000); | |
} catch { | |
console.log('Vectors: Synchronization blocked by another process'); | |
return -1; | |
} | |
try { | |
syncBlocked = true; | |
const context = getContext(); | |
const chatId = getCurrentChatId(); | |
if (!chatId || !Array.isArray(context.chat)) { | |
console.debug('Vectors: No chat selected'); | |
return -1; | |
} | |
let hashedMessages = context.chat.filter(x => !x.is_system).map(x => ({ text: String(substituteParams(x.mes)), hash: getStringHash(substituteParams(x.mes)), index: context.chat.indexOf(x) })); | |
const hashesInCollection = await getSavedHashes(chatId); | |
if (settings.summarize) { | |
hashedMessages = await summarize(hashedMessages, settings.summary_source); | |
} | |
const newVectorItems = hashedMessages.filter(x => !hashesInCollection.includes(x.hash)); | |
const deletedHashes = hashesInCollection.filter(x => !hashedMessages.some(y => y.hash === x)); | |
if (newVectorItems.length > 0) { | |
const chunkedBatch = splitByChunks(newVectorItems.slice(0, batchSize)); | |
console.log(`Vectors: Found ${newVectorItems.length} new items. Processing ${batchSize}...`); | |
await insertVectorItems(chatId, chunkedBatch); | |
} | |
if (deletedHashes.length > 0) { | |
await deleteVectorItems(chatId, deletedHashes); | |
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes`); | |
} | |
return newVectorItems.length - batchSize; | |
} catch (error) { | |
/** | |
* Gets the error message for a given cause | |
* @param {string} cause Error cause key | |
* @returns {string} Error message | |
*/ | |
function getErrorMessage(cause) { | |
switch (cause) { | |
case 'api_key_missing': | |
return 'API key missing. Save it in the "API Connections" panel.'; | |
case 'api_url_missing': | |
return 'API URL missing. Save it in the "API Connections" panel.'; | |
case 'api_model_missing': | |
return 'Vectorization Source Model is required, but not set.'; | |
case 'extras_module_missing': | |
return 'Extras API must provide an "embeddings" module.'; | |
default: | |
return 'Check server console for more details'; | |
} | |
} | |
console.error('Vectors: Failed to synchronize chat', error); | |
const message = getErrorMessage(error.cause); | |
toastr.error(message, 'Vectorization failed', { preventDuplicates: true }); | |
return -1; | |
} finally { | |
syncBlocked = false; | |
} | |
} | |
/** | |
* @type {Map<string, number>} Cache object for storing hash values | |
*/ | |
const hashCache = new Map(); | |
/** | |
* Gets the hash value for a given string | |
* @param {string} str Input string | |
* @returns {number} Hash value | |
*/ | |
function getStringHash(str) { | |
// Check if the hash is already in the cache | |
if (hashCache.has(str)) { | |
return hashCache.get(str); | |
} | |
// Calculate the hash value | |
const hash = calculateHash(str); | |
// Store the hash in the cache | |
hashCache.set(str, hash); | |
return hash; | |
} | |
/** | |
* Retrieves files from the chat and inserts them into the vector index. | |
* @param {object[]} chat Array of chat messages | |
* @returns {Promise<void>} | |
*/ | |
async function processFiles(chat) { | |
try { | |
if (!settings.enabled_files) { | |
return; | |
} | |
const dataBankCollectionIds = await ingestDataBankAttachments(); | |
if (dataBankCollectionIds.length) { | |
const queryText = await getQueryText(chat, 'file'); | |
await injectDataBankChunks(queryText, dataBankCollectionIds); | |
} | |
for (const message of chat) { | |
// Message has no file | |
if (!message?.extra?.file) { | |
continue; | |
} | |
// Trim file inserted by the script | |
const fileText = String(message.mes) | |
.substring(0, message.extra.fileLength).trim(); | |
// Convert kilobytes to string length | |
const thresholdLength = settings.size_threshold * 1024; | |
// File is too small | |
if (fileText.length < thresholdLength) { | |
continue; | |
} | |
message.mes = message.mes.substring(message.extra.fileLength); | |
const fileName = message.extra.file.name; | |
const fileUrl = message.extra.file.url; | |
const collectionId = getFileCollectionId(fileUrl); | |
const hashesInCollection = await getSavedHashes(collectionId); | |
// File is already in the collection | |
if (!hashesInCollection.length) { | |
await vectorizeFile(fileText, fileName, collectionId, settings.chunk_size, settings.overlap_percent); | |
} | |
const queryText = await getQueryText(chat, 'file'); | |
const fileChunks = await retrieveFileChunks(queryText, collectionId); | |
message.mes = `${fileChunks}\n\n${message.mes}`; | |
} | |
} catch (error) { | |
console.error('Vectors: Failed to retrieve files', error); | |
} | |
} | |
/** | |
* Ensures that data bank attachments are ingested and inserted into the vector index. | |
* @param {string} [source] Optional source filter for data bank attachments. | |
* @returns {Promise<string[]>} Collection IDs | |
*/ | |
async function ingestDataBankAttachments(source) { | |
// Exclude disabled files | |
const dataBank = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false); | |
const dataBankCollectionIds = []; | |
for (const file of dataBank) { | |
const collectionId = getFileCollectionId(file.url); | |
const hashesInCollection = await getSavedHashes(collectionId); | |
dataBankCollectionIds.push(collectionId); | |
// File is already in the collection | |
if (hashesInCollection.length) { | |
continue; | |
} | |
// Download and process the file | |
file.text = await getFileAttachment(file.url); | |
console.log(`Vectors: Retrieved file ${file.name} from Data Bank`); | |
// Convert kilobytes to string length | |
const thresholdLength = settings.size_threshold_db * 1024; | |
// Use chunk size from settings if file is larger than threshold | |
const chunkSize = file.size > thresholdLength ? settings.chunk_size_db : -1; | |
await vectorizeFile(file.text, file.name, collectionId, chunkSize, settings.overlap_percent_db); | |
} | |
return dataBankCollectionIds; | |
} | |
/** | |
* Inserts file chunks from the Data Bank into the prompt. | |
* @param {string} queryText Text to query | |
* @param {string[]} collectionIds File collection IDs | |
* @returns {Promise<void>} | |
*/ | |
async function injectDataBankChunks(queryText, collectionIds) { | |
try { | |
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.chunk_count_db, settings.score_threshold); | |
console.debug(`Vectors: Retrieved ${collectionIds.length} Data Bank collections`, queryResults); | |
let textResult = ''; | |
for (const collectionId in queryResults) { | |
console.debug(`Vectors: Processing Data Bank collection ${collectionId}`, queryResults[collectionId]); | |
const metadata = queryResults[collectionId].metadata?.filter(x => x.text)?.sort((a, b) => a.index - b.index)?.map(x => x.text)?.filter(onlyUnique) || []; | |
textResult += metadata.join('\n') + '\n\n'; | |
} | |
if (!textResult) { | |
console.debug('Vectors: No Data Bank chunks found'); | |
return; | |
} | |
const insertedText = substituteParamsExtended(settings.file_template_db, { text: textResult }); | |
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, insertedText, settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db); | |
} catch (error) { | |
console.error('Vectors: Failed to insert Data Bank chunks', error); | |
} | |
} | |
/** | |
* Retrieves file chunks from the vector index and inserts them into the chat. | |
* @param {string} queryText Text to query | |
* @param {string} collectionId File collection ID | |
* @returns {Promise<string>} Retrieved file text | |
*/ | |
async function retrieveFileChunks(queryText, collectionId) { | |
console.debug(`Vectors: Retrieving file chunks for collection ${collectionId}`, queryText); | |
const queryResults = await queryCollection(collectionId, queryText, settings.chunk_count); | |
console.debug(`Vectors: Retrieved ${queryResults.hashes.length} file chunks for collection ${collectionId}`, queryResults); | |
const metadata = queryResults.metadata.filter(x => x.text).sort((a, b) => a.index - b.index).map(x => x.text).filter(onlyUnique); | |
const fileText = metadata.join('\n'); | |
return fileText; | |
} | |
/** | |
* Vectorizes a file and inserts it into the vector index. | |
* @param {string} fileText File text | |
* @param {string} fileName File name | |
* @param {string} collectionId File collection ID | |
* @param {number} chunkSize Chunk size | |
* @param {number} overlapPercent Overlap size (in %) | |
* @returns {Promise<boolean>} True if successful, false if not | |
*/ | |
async function vectorizeFile(fileText, fileName, collectionId, chunkSize, overlapPercent) { | |
try { | |
if (settings.translate_files && typeof window['translate'] === 'function') { | |
console.log(`Vectors: Translating file ${fileName} to English...`); | |
const translatedText = await window['translate'](fileText, 'en'); | |
fileText = translatedText; | |
} | |
const toast = toastr.info('Vectorization may take some time, please wait...', `Ingesting file ${fileName}`); | |
const overlapSize = Math.round(chunkSize * overlapPercent / 100); | |
const delimiters = getChunkDelimiters(); | |
// Overlap should not be included in chunk size. It will be later compensated by overlapChunks | |
chunkSize = overlapSize > 0 ? (chunkSize - overlapSize) : chunkSize; | |
const chunks = splitRecursive(fileText, chunkSize, delimiters).map((x, y, z) => overlapSize > 0 ? overlapChunks(x, y, z, overlapSize) : x); | |
console.debug(`Vectors: Split file ${fileName} into ${chunks.length} chunks with ${overlapPercent}% overlap`, chunks); | |
const items = chunks.map((chunk, index) => ({ hash: getStringHash(chunk), text: chunk, index: index })); | |
await insertVectorItems(collectionId, items); | |
toastr.clear(toast); | |
console.log(`Vectors: Inserted ${chunks.length} vector items for file ${fileName} into ${collectionId}`); | |
return true; | |
} catch (error) { | |
toastr.error(String(error), 'Failed to vectorize file', { preventDuplicates: true }); | |
console.error('Vectors: Failed to vectorize file', error); | |
return false; | |
} | |
} | |
/** | |
* Removes the most relevant messages from the chat and displays them in the extension prompt | |
* @param {object[]} chat Array of chat messages | |
*/ | |
async function rearrangeChat(chat) { | |
try { | |
// Clear the extension prompt | |
setExtensionPrompt(EXTENSION_PROMPT_TAG, '', settings.position, settings.depth, settings.include_wi); | |
setExtensionPrompt(EXTENSION_PROMPT_TAG_DB, '', settings.file_position_db, settings.file_depth_db, settings.include_wi, settings.file_depth_role_db); | |
if (settings.enabled_files) { | |
await processFiles(chat); | |
} | |
if (settings.enabled_world_info) { | |
await activateWorldInfo(chat); | |
} | |
if (!settings.enabled_chats) { | |
return; | |
} | |
const chatId = getCurrentChatId(); | |
if (!chatId || !Array.isArray(chat)) { | |
console.debug('Vectors: No chat selected'); | |
return; | |
} | |
if (chat.length < settings.protect) { | |
console.debug(`Vectors: Not enough messages to rearrange (less than ${settings.protect})`); | |
return; | |
} | |
const queryText = await getQueryText(chat, 'chat'); | |
if (queryText.length === 0) { | |
console.debug('Vectors: No text to query'); | |
return; | |
} | |
// Get the most relevant messages, excluding the last few | |
const queryResults = await queryCollection(chatId, queryText, settings.insert); | |
const queryHashes = queryResults.hashes.filter(onlyUnique); | |
const queriedMessages = []; | |
const insertedHashes = new Set(); | |
const retainMessages = chat.slice(-settings.protect); | |
for (const message of chat) { | |
if (retainMessages.includes(message) || !message.mes) { | |
continue; | |
} | |
const hash = getStringHash(substituteParams(message.mes)); | |
if (queryHashes.includes(hash) && !insertedHashes.has(hash)) { | |
queriedMessages.push(message); | |
insertedHashes.add(hash); | |
} | |
} | |
// Rearrange queried messages to match query order | |
// Order is reversed because more relevant are at the lower indices | |
queriedMessages.sort((a, b) => queryHashes.indexOf(getStringHash(substituteParams(b.mes))) - queryHashes.indexOf(getStringHash(substituteParams(a.mes)))); | |
// Remove queried messages from the original chat array | |
for (const message of chat) { | |
if (queriedMessages.includes(message)) { | |
chat.splice(chat.indexOf(message), 1); | |
} | |
} | |
if (queriedMessages.length === 0) { | |
console.debug('Vectors: No relevant messages found'); | |
return; | |
} | |
// Format queried messages into a single string | |
const insertedText = getPromptText(queriedMessages); | |
setExtensionPrompt(EXTENSION_PROMPT_TAG, insertedText, settings.position, settings.depth, settings.include_wi); | |
} catch (error) { | |
toastr.error('Generation interceptor aborted. Check browser console for more details.', 'Vector Storage'); | |
console.error('Vectors: Failed to rearrange chat', error); | |
} | |
} | |
/** | |
* @param {any[]} queriedMessages | |
* @returns {string} | |
*/ | |
function getPromptText(queriedMessages) { | |
const queriedText = queriedMessages.map(x => collapseNewlines(`${x.name}: ${x.mes}`).trim()).join('\n\n'); | |
console.log('Vectors: relevant past messages found.\n', queriedText); | |
return substituteParamsExtended(settings.template, { text: queriedText }); | |
} | |
/** | |
* Modifies text chunks to include overlap with adjacent chunks. | |
* @param {string} chunk Current item | |
* @param {number} index Current index | |
* @param {string[]} chunks List of chunks | |
* @param {number} overlapSize Size of the overlap | |
* @returns {string} Overlapped chunks, with overlap trimmed to sentence boundaries | |
*/ | |
function overlapChunks(chunk, index, chunks, overlapSize) { | |
const halfOverlap = Math.floor(overlapSize / 2); | |
const nextChunk = chunks[index + 1]; | |
const prevChunk = chunks[index - 1]; | |
const nextOverlap = trimToEndSentence(nextChunk?.substring(0, halfOverlap)) || ''; | |
const prevOverlap = trimToStartSentence(prevChunk?.substring(prevChunk.length - halfOverlap)) || ''; | |
const overlappedChunk = [prevOverlap, chunk, nextOverlap].filter(x => x).join(' '); | |
return overlappedChunk; | |
} | |
window['vectors_rearrangeChat'] = rearrangeChat; | |
const onChatEvent = debounce(async () => await moduleWorker.update(), debounce_timeout.relaxed); | |
/** | |
* Gets the text to query from the chat | |
* @param {object[]} chat Chat messages | |
* @param {'file'|'chat'|'world-info'} initiator Initiator of the query | |
* @returns {Promise<string>} Text to query | |
*/ | |
async function getQueryText(chat, initiator) { | |
let queryText = ''; | |
let i = 0; | |
let hashedMessages = chat.map(x => ({ text: String(substituteParams(x.mes)) })); | |
if (initiator === 'chat' && settings.enabled_chats && settings.summarize && settings.summarize_sent) { | |
hashedMessages = await summarize(hashedMessages, settings.summary_source); | |
} | |
for (const message of hashedMessages.slice().reverse()) { | |
if (message.text) { | |
queryText += message.text + '\n'; | |
i++; | |
} | |
if (i === settings.query) { | |
break; | |
} | |
} | |
return collapseNewlines(queryText).trim(); | |
} | |
/** | |
* Gets the saved hashes for a collection | |
* @param {string} collectionId | |
* @returns {Promise<number[]>} Saved hashes | |
*/ | |
async function getSavedHashes(collectionId) { | |
const response = await fetch('/api/vector/list', { | |
method: 'POST', | |
headers: getRequestHeaders(), | |
body: JSON.stringify({ | |
collectionId: collectionId, | |
source: settings.source, | |
}), | |
}); | |
if (!response.ok) { | |
throw new Error(`Failed to get saved hashes for collection ${collectionId}`); | |
} | |
const hashes = await response.json(); | |
return hashes; | |
} | |
function getVectorHeaders() { | |
const headers = getRequestHeaders(); | |
switch (settings.source) { | |
case 'extras': | |
addExtrasHeaders(headers); | |
break; | |
case 'togetherai': | |
addTogetherAiHeaders(headers); | |
break; | |
case 'openai': | |
addOpenAiHeaders(headers); | |
break; | |
case 'cohere': | |
addCohereHeaders(headers); | |
break; | |
case 'ollama': | |
addOllamaHeaders(headers); | |
break; | |
case 'llamacpp': | |
addLlamaCppHeaders(headers); | |
break; | |
case 'vllm': | |
addVllmHeaders(headers); | |
break; | |
default: | |
break; | |
} | |
return headers; | |
} | |
/** | |
* Add headers for the Extras API source. | |
* @param {object} headers Headers object | |
*/ | |
function addExtrasHeaders(headers) { | |
console.log(`Vector source is extras, populating API URL: ${extension_settings.apiUrl}`); | |
Object.assign(headers, { | |
'X-Extras-Url': extension_settings.apiUrl, | |
'X-Extras-Key': extension_settings.apiKey, | |
}); | |
} | |
/** | |
* Add headers for the TogetherAI API source. | |
* @param {object} headers Headers object | |
*/ | |
function addTogetherAiHeaders(headers) { | |
Object.assign(headers, { | |
'X-Togetherai-Model': extension_settings.vectors.togetherai_model, | |
}); | |
} | |
/** | |
* Add headers for the OpenAI API source. | |
* @param {object} headers Header object | |
*/ | |
function addOpenAiHeaders(headers) { | |
Object.assign(headers, { | |
'X-OpenAI-Model': extension_settings.vectors.openai_model, | |
}); | |
} | |
/** | |
* Add headers for the Cohere API source. | |
* @param {object} headers Header object | |
*/ | |
function addCohereHeaders(headers) { | |
Object.assign(headers, { | |
'X-Cohere-Model': extension_settings.vectors.cohere_model, | |
}); | |
} | |
/** | |
* Add headers for the Ollama API source. | |
* @param {object} headers Header object | |
*/ | |
function addOllamaHeaders(headers) { | |
Object.assign(headers, { | |
'X-Ollama-Model': extension_settings.vectors.ollama_model, | |
'X-Ollama-URL': textgenerationwebui_settings.server_urls[textgen_types.OLLAMA], | |
'X-Ollama-Keep': !!extension_settings.vectors.ollama_keep, | |
}); | |
} | |
/** | |
* Add headers for the LlamaCpp API source. | |
* @param {object} headers Header object | |
*/ | |
function addLlamaCppHeaders(headers) { | |
Object.assign(headers, { | |
'X-LlamaCpp-URL': textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP], | |
}); | |
} | |
/** | |
* Add headers for the VLLM API source. | |
* @param {object} headers Header object | |
*/ | |
function addVllmHeaders(headers) { | |
Object.assign(headers, { | |
'X-Vllm-URL': textgenerationwebui_settings.server_urls[textgen_types.VLLM], | |
'X-Vllm-Model': extension_settings.vectors.vllm_model, | |
}); | |
} | |
/** | |
* Inserts vector items into a collection | |
* @param {string} collectionId - The collection to insert into | |
* @param {{ hash: number, text: string }[]} items - The items to insert | |
* @returns {Promise<void>} | |
*/ | |
async function insertVectorItems(collectionId, items) { | |
throwIfSourceInvalid(); | |
const headers = getVectorHeaders(); | |
const response = await fetch('/api/vector/insert', { | |
method: 'POST', | |
headers: headers, | |
body: JSON.stringify({ | |
collectionId: collectionId, | |
items: items, | |
source: settings.source, | |
}), | |
}); | |
if (!response.ok) { | |
throw new Error(`Failed to insert vector items for collection ${collectionId}`); | |
} | |
} | |
/** | |
* Throws an error if the source is invalid (missing API key or URL, or missing module) | |
*/ | |
function throwIfSourceInvalid() { | |
if (settings.source === 'openai' && !secret_state[SECRET_KEYS.OPENAI] || | |
settings.source === 'palm' && !secret_state[SECRET_KEYS.MAKERSUITE] || | |
settings.source === 'mistral' && !secret_state[SECRET_KEYS.MISTRALAI] || | |
settings.source === 'togetherai' && !secret_state[SECRET_KEYS.TOGETHERAI] || | |
settings.source === 'nomicai' && !secret_state[SECRET_KEYS.NOMICAI] || | |
settings.source === 'cohere' && !secret_state[SECRET_KEYS.COHERE]) { | |
throw new Error('Vectors: API key missing', { cause: 'api_key_missing' }); | |
} | |
if (settings.source === 'ollama' && !textgenerationwebui_settings.server_urls[textgen_types.OLLAMA] || | |
settings.source === 'vllm' && !textgenerationwebui_settings.server_urls[textgen_types.VLLM] || | |
settings.source === 'llamacpp' && !textgenerationwebui_settings.server_urls[textgen_types.LLAMACPP]) { | |
throw new Error('Vectors: API URL missing', { cause: 'api_url_missing' }); | |
} | |
if (settings.source === 'ollama' && !settings.ollama_model || settings.source === 'vllm' && !settings.vllm_model) { | |
throw new Error('Vectors: API model missing', { cause: 'api_model_missing' }); | |
} | |
if (settings.source === 'extras' && !modules.includes('embeddings')) { | |
throw new Error('Vectors: Embeddings module missing', { cause: 'extras_module_missing' }); | |
} | |
} | |
/** | |
* Deletes vector items from a collection | |
* @param {string} collectionId - The collection to delete from | |
* @param {number[]} hashes - The hashes of the items to delete | |
* @returns {Promise<void>} | |
*/ | |
async function deleteVectorItems(collectionId, hashes) { | |
const response = await fetch('/api/vector/delete', { | |
method: 'POST', | |
headers: getRequestHeaders(), | |
body: JSON.stringify({ | |
collectionId: collectionId, | |
hashes: hashes, | |
source: settings.source, | |
}), | |
}); | |
if (!response.ok) { | |
throw new Error(`Failed to delete vector items for collection ${collectionId}`); | |
} | |
} | |
/** | |
* @param {string} collectionId - The collection to query | |
* @param {string} searchText - The text to query | |
* @param {number} topK - The number of results to return | |
* @returns {Promise<{ hashes: number[], metadata: object[]}>} - Hashes of the results | |
*/ | |
async function queryCollection(collectionId, searchText, topK) { | |
const headers = getVectorHeaders(); | |
const response = await fetch('/api/vector/query', { | |
method: 'POST', | |
headers: headers, | |
body: JSON.stringify({ | |
collectionId: collectionId, | |
searchText: searchText, | |
topK: topK, | |
source: settings.source, | |
threshold: settings.score_threshold, | |
}), | |
}); | |
if (!response.ok) { | |
throw new Error(`Failed to query collection ${collectionId}`); | |
} | |
return await response.json(); | |
} | |
/** | |
* Queries multiple collections for a given text. | |
* @param {string[]} collectionIds - Collection IDs to query | |
* @param {string} searchText - Text to query | |
* @param {number} topK - Number of results to return | |
* @param {number} threshold - Score threshold | |
* @returns {Promise<Record<string, { hashes: number[], metadata: object[] }>>} - Results mapped to collection IDs | |
*/ | |
async function queryMultipleCollections(collectionIds, searchText, topK, threshold) { | |
const headers = getVectorHeaders(); | |
const response = await fetch('/api/vector/query-multi', { | |
method: 'POST', | |
headers: headers, | |
body: JSON.stringify({ | |
collectionIds: collectionIds, | |
searchText: searchText, | |
topK: topK, | |
source: settings.source, | |
threshold: threshold ?? settings.score_threshold, | |
}), | |
}); | |
if (!response.ok) { | |
throw new Error('Failed to query multiple collections'); | |
} | |
return await response.json(); | |
} | |
/** | |
* Purges the vector index for a file. | |
* @param {string} fileUrl File URL to purge | |
*/ | |
async function purgeFileVectorIndex(fileUrl) { | |
try { | |
if (!settings.enabled_files) { | |
return; | |
} | |
console.log(`Vectors: Purging file vector index for ${fileUrl}`); | |
const collectionId = getFileCollectionId(fileUrl); | |
const response = await fetch('/api/vector/purge', { | |
method: 'POST', | |
headers: getRequestHeaders(), | |
body: JSON.stringify({ | |
collectionId: collectionId, | |
}), | |
}); | |
if (!response.ok) { | |
throw new Error(`Could not delete vector index for collection ${collectionId}`); | |
} | |
console.log(`Vectors: Purged vector index for collection ${collectionId}`); | |
} catch (error) { | |
console.error('Vectors: Failed to purge file', error); | |
} | |
} | |
/** | |
* Purges the vector index for a collection. | |
* @param {string} collectionId Collection ID to purge | |
* @returns <Promise<boolean>> True if deleted, false if not | |
*/ | |
async function purgeVectorIndex(collectionId) { | |
try { | |
if (!settings.enabled_chats) { | |
return true; | |
} | |
const response = await fetch('/api/vector/purge', { | |
method: 'POST', | |
headers: getRequestHeaders(), | |
body: JSON.stringify({ | |
collectionId: collectionId, | |
}), | |
}); | |
if (!response.ok) { | |
throw new Error(`Could not delete vector index for collection ${collectionId}`); | |
} | |
console.log(`Vectors: Purged vector index for collection ${collectionId}`); | |
return true; | |
} catch (error) { | |
console.error('Vectors: Failed to purge', error); | |
return false; | |
} | |
} | |
/** | |
* Purges all vector indexes. | |
*/ | |
async function purgeAllVectorIndexes() { | |
try { | |
const response = await fetch('/api/vector/purge-all', { | |
method: 'POST', | |
headers: getRequestHeaders(), | |
}); | |
if (!response.ok) { | |
throw new Error('Failed to purge all vector indexes'); | |
} | |
console.log('Vectors: Purged all vector indexes'); | |
toastr.success('All vector indexes purged', 'Purge successful'); | |
} catch (error) { | |
console.error('Vectors: Failed to purge all', error); | |
toastr.error('Failed to purge all vector indexes', 'Purge failed'); | |
} | |
} | |
function toggleSettings() { | |
$('#vectors_files_settings').toggle(!!settings.enabled_files); | |
$('#vectors_chats_settings').toggle(!!settings.enabled_chats); | |
$('#vectors_world_info_settings').toggle(!!settings.enabled_world_info); | |
$('#together_vectorsModel').toggle(settings.source === 'togetherai'); | |
$('#openai_vectorsModel').toggle(settings.source === 'openai'); | |
$('#cohere_vectorsModel').toggle(settings.source === 'cohere'); | |
$('#ollama_vectorsModel').toggle(settings.source === 'ollama'); | |
$('#llamacpp_vectorsModel').toggle(settings.source === 'llamacpp'); | |
$('#vllm_vectorsModel').toggle(settings.source === 'vllm'); | |
$('#nomicai_apiKey').toggle(settings.source === 'nomicai'); | |
} | |
async function onPurgeClick() { | |
const chatId = getCurrentChatId(); | |
if (!chatId) { | |
toastr.info('No chat selected', 'Purge aborted'); | |
return; | |
} | |
if (await purgeVectorIndex(chatId)) { | |
toastr.success('Vector index purged', 'Purge successful'); | |
} else { | |
toastr.error('Failed to purge vector index', 'Purge failed'); | |
} | |
} | |
async function onViewStatsClick() { | |
const chatId = getCurrentChatId(); | |
if (!chatId) { | |
toastr.info('No chat selected'); | |
return; | |
} | |
const hashesInCollection = await getSavedHashes(chatId); | |
const totalHashes = hashesInCollection.length; | |
const uniqueHashes = hashesInCollection.filter(onlyUnique).length; | |
toastr.info(`Total hashes: <b>${totalHashes}</b><br> | |
Unique hashes: <b>${uniqueHashes}</b><br><br> | |
I'll mark collected messages with a green circle.`, | |
`Stats for chat ${chatId}`, | |
{ timeOut: 10000, escapeHtml: false }, | |
); | |
const chat = getContext().chat; | |
for (const message of chat) { | |
if (hashesInCollection.includes(getStringHash(substituteParams(message.mes)))) { | |
const messageElement = $(`.mes[mesid="${chat.indexOf(message)}"]`); | |
messageElement.addClass('vectorized'); | |
} | |
} | |
} | |
async function onVectorizeAllFilesClick() { | |
try { | |
const dataBank = getDataBankAttachments(); | |
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file); | |
const allFiles = [...dataBank, ...chatAttachments]; | |
/** | |
* Gets the chunk size for a file attachment. | |
* @param file {import('../../chats.js').FileAttachment} File attachment | |
* @returns {number} Chunk size for the file | |
*/ | |
function getChunkSize(file) { | |
if (chatAttachments.includes(file)) { | |
// Convert kilobytes to string length | |
const thresholdLength = settings.size_threshold * 1024; | |
return file.size > thresholdLength ? settings.chunk_size : -1; | |
} | |
if (dataBank.includes(file)) { | |
// Convert kilobytes to string length | |
const thresholdLength = settings.size_threshold_db * 1024; | |
// Use chunk size from settings if file is larger than threshold | |
return file.size > thresholdLength ? settings.chunk_size_db : -1; | |
} | |
return -1; | |
} | |
/** | |
* Gets the overlap percent for a file attachment. | |
* @param file {import('../../chats.js').FileAttachment} File attachment | |
* @returns {number} Overlap percent for the file | |
*/ | |
function getOverlapPercent(file) { | |
if (chatAttachments.includes(file)) { | |
return settings.overlap_percent; | |
} | |
if (dataBank.includes(file)) { | |
return settings.overlap_percent_db; | |
} | |
return 0; | |
} | |
let allSuccess = true; | |
for (const file of allFiles) { | |
const text = await getFileAttachment(file.url); | |
const collectionId = getFileCollectionId(file.url); | |
const hashes = await getSavedHashes(collectionId); | |
if (hashes.length) { | |
console.log(`Vectors: File ${file.name} is already vectorized`); | |
continue; | |
} | |
const chunkSize = getChunkSize(file); | |
const overlapPercent = getOverlapPercent(file); | |
const result = await vectorizeFile(text, file.name, collectionId, chunkSize, overlapPercent); | |
if (!result) { | |
allSuccess = false; | |
} | |
} | |
if (allSuccess) { | |
toastr.success('All files vectorized', 'Vectorization successful'); | |
} else { | |
toastr.warning('Some files failed to vectorize. Check browser console for more details.', 'Vector Storage'); | |
} | |
} catch (error) { | |
console.error('Vectors: Failed to vectorize all files', error); | |
toastr.error('Failed to vectorize all files', 'Vectorization failed'); | |
} | |
} | |
async function onPurgeFilesClick() { | |
try { | |
const dataBank = getDataBankAttachments(); | |
const chatAttachments = getContext().chat.filter(x => x.extra?.file).map(x => x.extra.file); | |
const allFiles = [...dataBank, ...chatAttachments]; | |
for (const file of allFiles) { | |
await purgeFileVectorIndex(file.url); | |
} | |
toastr.success('All files purged', 'Purge successful'); | |
} catch (error) { | |
console.error('Vectors: Failed to purge all files', error); | |
toastr.error('Failed to purge all files', 'Purge failed'); | |
} | |
} | |
async function activateWorldInfo(chat) { | |
if (!settings.enabled_world_info) { | |
console.debug('Vectors: Disabled for World Info'); | |
return; | |
} | |
const entries = await getSortedEntries(); | |
if (!Array.isArray(entries) || entries.length === 0) { | |
console.debug('Vectors: No WI entries found'); | |
return; | |
} | |
// Group entries by "world" field | |
const groupedEntries = {}; | |
for (const entry of entries) { | |
// Skip orphaned entries. Is it even possible? | |
if (!entry.world) { | |
console.debug('Vectors: Skipped orphaned WI entry', entry); | |
continue; | |
} | |
// Skip disabled entries | |
if (entry.disable) { | |
console.debug('Vectors: Skipped disabled WI entry', entry); | |
continue; | |
} | |
// Skip entries without content | |
if (!entry.content) { | |
console.debug('Vectors: Skipped WI entry without content', entry); | |
continue; | |
} | |
// Skip non-vectorized entries | |
if (!entry.vectorized && !settings.enabled_for_all) { | |
console.debug('Vectors: Skipped non-vectorized WI entry', entry); | |
continue; | |
} | |
if (!Object.hasOwn(groupedEntries, entry.world)) { | |
groupedEntries[entry.world] = []; | |
} | |
groupedEntries[entry.world].push(entry); | |
} | |
const collectionIds = []; | |
if (Object.keys(groupedEntries).length === 0) { | |
console.debug('Vectors: No WI entries to synchronize'); | |
return; | |
} | |
// Synchronize collections | |
for (const world in groupedEntries) { | |
const collectionId = `world_${getStringHash(world)}`; | |
const hashesInCollection = await getSavedHashes(collectionId); | |
const newEntries = groupedEntries[world].filter(x => !hashesInCollection.includes(getStringHash(x.content))); | |
const deletedHashes = hashesInCollection.filter(x => !groupedEntries[world].some(y => getStringHash(y.content) === x)); | |
if (newEntries.length > 0) { | |
console.log(`Vectors: Found ${newEntries.length} new WI entries for world ${world}`); | |
await insertVectorItems(collectionId, newEntries.map(x => ({ hash: getStringHash(x.content), text: x.content, index: x.uid }))); | |
} | |
if (deletedHashes.length > 0) { | |
console.log(`Vectors: Deleted ${deletedHashes.length} old hashes for world ${world}`); | |
await deleteVectorItems(collectionId, deletedHashes); | |
} | |
collectionIds.push(collectionId); | |
} | |
// Perform a multi-query | |
const queryText = await getQueryText(chat, 'world-info'); | |
if (queryText.length === 0) { | |
console.debug('Vectors: No text to query for WI'); | |
return; | |
} | |
const queryResults = await queryMultipleCollections(collectionIds, queryText, settings.max_entries, settings.score_threshold); | |
const activatedHashes = Object.values(queryResults).flatMap(x => x.hashes).filter(onlyUnique); | |
const activatedEntries = []; | |
// Activate entries found in the query results | |
for (const entry of entries) { | |
const hash = getStringHash(entry.content); | |
if (activatedHashes.includes(hash)) { | |
activatedEntries.push(entry); | |
} | |
} | |
if (activatedEntries.length === 0) { | |
console.debug('Vectors: No activated WI entries found'); | |
return; | |
} | |
console.log(`Vectors: Activated ${activatedEntries.length} WI entries`, activatedEntries); | |
await eventSource.emit(event_types.WORLDINFO_FORCE_ACTIVATE, activatedEntries); | |
} | |
jQuery(async () => { | |
if (!extension_settings.vectors) { | |
extension_settings.vectors = settings; | |
} | |
// Migrate from old settings | |
if (settings['enabled']) { | |
settings.enabled_chats = true; | |
} | |
Object.assign(settings, extension_settings.vectors); | |
// Migrate from TensorFlow to Transformers | |
settings.source = settings.source !== 'local' ? settings.source : 'transformers'; | |
const template = await renderExtensionTemplateAsync(MODULE_NAME, 'settings'); | |
$('#vectors_container').append(template); | |
$('#vectors_enabled_chats').prop('checked', settings.enabled_chats).on('input', () => { | |
settings.enabled_chats = $('#vectors_enabled_chats').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
toggleSettings(); | |
}); | |
$('#vectors_modelWarning').hide(); | |
$('#vectors_enabled_files').prop('checked', settings.enabled_files).on('input', () => { | |
settings.enabled_files = $('#vectors_enabled_files').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
toggleSettings(); | |
}); | |
$('#vectors_source').val(settings.source).on('change', () => { | |
settings.source = String($('#vectors_source').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
toggleSettings(); | |
}); | |
$('#api_key_nomicai').on('click', async () => { | |
const popupText = 'NomicAI API Key:'; | |
const key = await callGenericPopup(popupText, POPUP_TYPE.INPUT, '', { | |
customButtons: [{ | |
text: 'Remove Key', | |
appendAtEnd: true, | |
result: POPUP_RESULT.NEGATIVE, | |
action: async () => { | |
await writeSecret(SECRET_KEYS.NOMICAI, ''); | |
toastr.success('API Key removed'); | |
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]); | |
saveSettingsDebounced(); | |
}, | |
}], | |
}); | |
if (!key) { | |
return; | |
} | |
await writeSecret(SECRET_KEYS.NOMICAI, String(key)); | |
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]); | |
toastr.success('API Key saved'); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_togetherai_model').val(settings.togetherai_model).on('change', () => { | |
$('#vectors_modelWarning').show(); | |
settings.togetherai_model = String($('#vectors_togetherai_model').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_openai_model').val(settings.openai_model).on('change', () => { | |
$('#vectors_modelWarning').show(); | |
settings.openai_model = String($('#vectors_openai_model').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_cohere_model').val(settings.cohere_model).on('change', () => { | |
$('#vectors_modelWarning').show(); | |
settings.cohere_model = String($('#vectors_cohere_model').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_ollama_model').val(settings.ollama_model).on('input', () => { | |
$('#vectors_modelWarning').show(); | |
settings.ollama_model = String($('#vectors_ollama_model').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_vllm_model').val(settings.vllm_model).on('input', () => { | |
$('#vectors_modelWarning').show(); | |
settings.vllm_model = String($('#vectors_vllm_model').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_ollama_keep').prop('checked', settings.ollama_keep).on('input', () => { | |
settings.ollama_keep = $('#vectors_ollama_keep').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_template').val(settings.template).on('input', () => { | |
settings.template = String($('#vectors_template').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_depth').val(settings.depth).on('input', () => { | |
settings.depth = Number($('#vectors_depth').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_protect').val(settings.protect).on('input', () => { | |
settings.protect = Number($('#vectors_protect').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_insert').val(settings.insert).on('input', () => { | |
settings.insert = Number($('#vectors_insert').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_query').val(settings.query).on('input', () => { | |
settings.query = Number($('#vectors_query').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$(`input[name="vectors_position"][value="${settings.position}"]`).prop('checked', true); | |
$('input[name="vectors_position"]').on('change', () => { | |
settings.position = Number($('input[name="vectors_position"]:checked').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_vectorize_all').on('click', onVectorizeAllClick); | |
$('#vectors_purge').on('click', onPurgeClick); | |
$('#vectors_view_stats').on('click', onViewStatsClick); | |
$('#vectors_files_vectorize_all').on('click', onVectorizeAllFilesClick); | |
$('#vectors_files_purge').on('click', onPurgeFilesClick); | |
$('#vectors_size_threshold').val(settings.size_threshold).on('input', () => { | |
settings.size_threshold = Number($('#vectors_size_threshold').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_chunk_size').val(settings.chunk_size).on('input', () => { | |
settings.chunk_size = Number($('#vectors_chunk_size').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_chunk_count').val(settings.chunk_count).on('input', () => { | |
settings.chunk_count = Number($('#vectors_chunk_count').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_include_wi').prop('checked', settings.include_wi).on('input', () => { | |
settings.include_wi = !!$('#vectors_include_wi').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_summarize').prop('checked', settings.summarize).on('input', () => { | |
settings.summarize = !!$('#vectors_summarize').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_summarize_user').prop('checked', settings.summarize_sent).on('input', () => { | |
settings.summarize_sent = !!$('#vectors_summarize_user').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_summary_source').val(settings.summary_source).on('change', () => { | |
settings.summary_source = String($('#vectors_summary_source').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_summary_prompt').val(settings.summary_prompt).on('input', () => { | |
settings.summary_prompt = String($('#vectors_summary_prompt').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_message_chunk_size').val(settings.message_chunk_size).on('input', () => { | |
settings.message_chunk_size = Number($('#vectors_message_chunk_size').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_size_threshold_db').val(settings.size_threshold_db).on('input', () => { | |
settings.size_threshold_db = Number($('#vectors_size_threshold_db').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_chunk_size_db').val(settings.chunk_size_db).on('input', () => { | |
settings.chunk_size_db = Number($('#vectors_chunk_size_db').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_chunk_count_db').val(settings.chunk_count_db).on('input', () => { | |
settings.chunk_count_db = Number($('#vectors_chunk_count_db').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_overlap_percent').val(settings.overlap_percent).on('input', () => { | |
settings.overlap_percent = Number($('#vectors_overlap_percent').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_overlap_percent_db').val(settings.overlap_percent_db).on('input', () => { | |
settings.overlap_percent_db = Number($('#vectors_overlap_percent_db').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_file_template_db').val(settings.file_template_db).on('input', () => { | |
settings.file_template_db = String($('#vectors_file_template_db').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$(`input[name="vectors_file_position_db"][value="${settings.file_position_db}"]`).prop('checked', true); | |
$('input[name="vectors_file_position_db"]').on('change', () => { | |
settings.file_position_db = Number($('input[name="vectors_file_position_db"]:checked').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_file_depth_db').val(settings.file_depth_db).on('input', () => { | |
settings.file_depth_db = Number($('#vectors_file_depth_db').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_file_depth_role_db').val(settings.file_depth_role_db).on('input', () => { | |
settings.file_depth_role_db = Number($('#vectors_file_depth_role_db').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_translate_files').prop('checked', settings.translate_files).on('input', () => { | |
settings.translate_files = !!$('#vectors_translate_files').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_enabled_world_info').prop('checked', settings.enabled_world_info).on('input', () => { | |
settings.enabled_world_info = !!$('#vectors_enabled_world_info').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
toggleSettings(); | |
}); | |
$('#vectors_enabled_for_all').prop('checked', settings.enabled_for_all).on('input', () => { | |
settings.enabled_for_all = !!$('#vectors_enabled_for_all').prop('checked'); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_max_entries').val(settings.max_entries).on('input', () => { | |
settings.max_entries = Number($('#vectors_max_entries').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_score_threshold').val(settings.score_threshold).on('input', () => { | |
settings.score_threshold = Number($('#vectors_score_threshold').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_force_chunk_delimiter').prop('checked', settings.force_chunk_delimiter).on('input', () => { | |
settings.force_chunk_delimiter = String($('#vectors_force_chunk_delimiter').val()); | |
Object.assign(extension_settings.vectors, settings); | |
saveSettingsDebounced(); | |
}); | |
$('#vectors_ollama_pull').on('click', (e) => { | |
const presetModel = extension_settings.vectors.ollama_model || ''; | |
e.preventDefault(); | |
$('#ollama_download_model').trigger('click'); | |
$('#dialogue_popup_input').val(presetModel); | |
}); | |
$('#api_key_nomicai').toggleClass('success', !!secret_state[SECRET_KEYS.NOMICAI]); | |
toggleSettings(); | |
eventSource.on(event_types.MESSAGE_DELETED, onChatEvent); | |
eventSource.on(event_types.MESSAGE_EDITED, onChatEvent); | |
eventSource.on(event_types.MESSAGE_SENT, onChatEvent); | |
eventSource.on(event_types.MESSAGE_RECEIVED, onChatEvent); | |
eventSource.on(event_types.MESSAGE_SWIPED, onChatEvent); | |
eventSource.on(event_types.CHAT_DELETED, purgeVectorIndex); | |
eventSource.on(event_types.GROUP_CHAT_DELETED, purgeVectorIndex); | |
eventSource.on(event_types.FILE_ATTACHMENT_DELETED, purgeFileVectorIndex); | |
SlashCommandParser.addCommandObject(SlashCommand.fromProps({ | |
name: 'db-ingest', | |
callback: async () => { | |
await ingestDataBankAttachments(); | |
return ''; | |
}, | |
aliases: ['databank-ingest', 'data-bank-ingest'], | |
helpString: 'Force the ingestion of all Data Bank attachments.', | |
})); | |
SlashCommandParser.addCommandObject(SlashCommand.fromProps({ | |
name: 'db-purge', | |
callback: async () => { | |
const dataBank = getDataBankAttachments(); | |
for (const file of dataBank) { | |
await purgeFileVectorIndex(file.url); | |
} | |
return ''; | |
}, | |
aliases: ['databank-purge', 'data-bank-purge'], | |
helpString: 'Purge the vector index for all Data Bank attachments.', | |
})); | |
SlashCommandParser.addCommandObject(SlashCommand.fromProps({ | |
name: 'db-search', | |
callback: async (args, query) => { | |
const clamp = (v) => Number.isNaN(v) ? null : Math.min(1, Math.max(0, v)); | |
const threshold = clamp(Number(args?.threshold ?? settings.score_threshold)); | |
const source = String(args?.source ?? ''); | |
const attachments = source ? getDataBankAttachmentsForSource(source, false) : getDataBankAttachments(false); | |
const collectionIds = await ingestDataBankAttachments(String(source)); | |
const queryResults = await queryMultipleCollections(collectionIds, String(query), settings.chunk_count_db, threshold); | |
// Map collection IDs to file URLs | |
const urls = Object | |
.keys(queryResults) | |
.map(x => attachments.find(y => getFileCollectionId(y.url) === x)) | |
.filter(x => x) | |
.map(x => x.url); | |
return JSON.stringify(urls); | |
}, | |
aliases: ['databank-search', 'data-bank-search'], | |
helpString: 'Search the Data Bank for a specific query using vector similarity. Returns a list of file URLs with the most relevant content.', | |
namedArgumentList: [ | |
new SlashCommandNamedArgument('threshold', 'Threshold for the similarity score in the [0, 1] range. Uses the global config value if not set.', ARGUMENT_TYPE.NUMBER, false, false, ''), | |
new SlashCommandNamedArgument('source', 'Optional filter for the attachments by source.', ARGUMENT_TYPE.STRING, false, false, '', ['global', 'character', 'chat']), | |
], | |
unnamedArgumentList: [ | |
new SlashCommandArgument('Query to search by.', ARGUMENT_TYPE.STRING, true, false), | |
], | |
returns: ARGUMENT_TYPE.LIST, | |
})); | |
registerDebugFunction('purge-everything', 'Purge all vector indices', 'Obliterate all stored vectors for all sources. No mercy.', async () => { | |
if (!confirm('Are you sure?')) { | |
return; | |
} | |
await purgeAllVectorIndexes(); | |
}); | |
}); | |