Spaces:
Running
Running
const fetch = require('node-fetch').default; | |
const { SECRET_KEYS, readSecret } = require('../endpoints/secrets'); | |
/** | |
* Gets the vector for the given text from gecko model | |
* @param {string[]} texts - The array of texts to get the vector for | |
* @param {import('../users').UserDirectoryList} directories - The directories object for the user | |
* @returns {Promise<number[][]>} - The array of vectors for the texts | |
*/ | |
async function getMakerSuiteBatchVector(texts, directories) { | |
const promises = texts.map(text => getMakerSuiteVector(text, directories)); | |
const vectors = await Promise.all(promises); | |
return vectors; | |
} | |
/** | |
* Gets the vector for the given text from PaLM gecko model | |
* @param {string} text - The text to get the vector for | |
* @param {import('../users').UserDirectoryList} directories - The directories object for the user | |
* @returns {Promise<number[]>} - The vector for the text | |
*/ | |
async function getMakerSuiteVector(text, directories) { | |
const key = readSecret(directories, SECRET_KEYS.MAKERSUITE); | |
if (!key) { | |
console.log('No Google AI Studio key found'); | |
throw new Error('No Google AI Studio key found'); | |
} | |
const response = await fetch(`https://generativelanguage.googleapis.com/v1beta/models/embedding-gecko-001:embedText?key=${key}`, { | |
method: 'POST', | |
headers: { | |
'Content-Type': 'application/json', | |
}, | |
body: JSON.stringify({ | |
text: text, | |
}), | |
}); | |
if (!response.ok) { | |
const text = await response.text(); | |
console.log('Google AI Studio request failed', response.statusText, text); | |
throw new Error('Google AI Studio request failed'); | |
} | |
const data = await response.json(); | |
// Access the "value" dictionary | |
const vector = data.embedding.value; | |
return vector; | |
} | |
module.exports = { | |
getMakerSuiteVector, | |
getMakerSuiteBatchVector, | |
}; | |