File size: 7,408 Bytes
c509e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import absolute_import

import numpy as np
import itertools

import torch
import torch.nn as nn
import torch.nn.functional as F

def grid_sample(input, grid, canvas = None):
  output = F.grid_sample(input, grid)
  if canvas is None:
    return output
  else:
    input_mask = input.data.new(input.size()).fill_(1)
    output_mask = F.grid_sample(input_mask, grid)
    padded_output = output * output_mask + canvas * (1 - output_mask)
    return padded_output


# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
  N = input_points.size(0)
  M = control_points.size(0)
  pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2)
  # original implementation, very slow
  # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
  pairwise_diff_square = pairwise_diff * pairwise_diff
  pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1]
  repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist)
  # fix numerical error for 0 * log(0), substitute all nan with 0
  mask = repr_matrix != repr_matrix
  repr_matrix.masked_fill_(mask, 0)
  return repr_matrix


# # output_ctrl_pts are specified, according to our task.
# def build_output_control_points(num_control_points, margins):
#   margin_x, margin_y = margins
#   margin_x, margin_y = 0,0
#   num_ctrl_pts_per_side = num_control_points // 2
#   ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
#   ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
#   ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
#   ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
#   ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
#   # ctrl_pts_top = ctrl_pts_top[1:-1,:]
#   # ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:]
#   output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
#   output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr)
#   return output_ctrl_pts

# output_ctrl_pts are specified, according to our task.
def build_output_control_points(num_control_points, margins):
  margin_x, margin_y = margins
  # margin_x, margin_y = 0,0
  num_ctrl_pts_per_side = (num_control_points-4) // 4 +2
  ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
  ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
  ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
  ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
  ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)

  ctrl_pts_x_left = np.ones(num_ctrl_pts_per_side) * margin_x
  ctrl_pts_x_right = np.ones(num_ctrl_pts_per_side) * (1.0-margin_x)
  ctrl_pts_left = np.stack([ctrl_pts_x_left[1:-1], ctrl_pts_x[1:-1]], axis=1)
  ctrl_pts_right = np.stack([ctrl_pts_x_right[1:-1], ctrl_pts_x[1:-1]], axis=1)

  output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom, ctrl_pts_left, ctrl_pts_right], axis=0)
  output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr)
  return output_ctrl_pts

# demo: ~/test/models/test_tps_transformation.py
class TPSSpatialTransformer(nn.Module):

  def __init__(self, output_image_size=None, num_control_points=None, margins=None):
    super(TPSSpatialTransformer, self).__init__()
    self.output_image_size = output_image_size
    self.num_control_points = num_control_points
    self.margins = margins

    self.target_height, self.target_width = output_image_size
    target_control_points = build_output_control_points(num_control_points, margins)
    N = num_control_points
    # N = N - 4

    # create padded kernel matrix
    forward_kernel = torch.zeros(N + 3, N + 3)
    target_control_partial_repr = compute_partial_repr(target_control_points, target_control_points)
    forward_kernel[:N, :N].copy_(target_control_partial_repr)
    forward_kernel[:N, -3].fill_(1)
    forward_kernel[-3, :N].fill_(1)
    forward_kernel[:N, -2:].copy_(target_control_points)
    forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1))
    # compute inverse matrix
    # print(forward_kernel.shape)
    inverse_kernel = torch.inverse(forward_kernel)

    # create target cordinate matrix
    HW = self.target_height * self.target_width
    target_coordinate = list(itertools.product(range(self.target_height), range(self.target_width)))
    target_coordinate = torch.Tensor(target_coordinate) # HW x 2
    Y, X = target_coordinate.split(1, dim = 1)
    Y = Y / (self.target_height - 1)
    X = X / (self.target_width - 1)
    target_coordinate = torch.cat([X, Y], dim = 1) # convert from (y, x) to (x, y)
    target_coordinate_partial_repr = compute_partial_repr(target_coordinate, target_control_points)
    target_coordinate_repr = torch.cat([
      target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate
    ], dim = 1)

    # register precomputed matrices
    self.register_buffer('inverse_kernel', inverse_kernel)
    self.register_buffer('padding_matrix', torch.zeros(3, 2))
    self.register_buffer('target_coordinate_repr', target_coordinate_repr)
    self.register_buffer('target_control_points', target_control_points)

  def forward(self, input, source_control_points,direction='dewarp'):
    if direction == 'dewarp':
      assert source_control_points.ndimension() == 3
      assert source_control_points.size(1) == self.num_control_points
      assert source_control_points.size(2) == 2
      batch_size = source_control_points.size(0)

      Y = torch.cat([source_control_points, self.padding_matrix.expand(batch_size, 3, 2)], 1)
      mapping_matrix = torch.matmul(self.inverse_kernel, Y)
      source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix)

      grid = source_coordinate.view(-1, self.target_height, self.target_width, 2)
      grid = torch.clamp(grid, 0, 1) # the source_control_points may be out of [0, 1].
      # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
      grid = 2.0 * grid - 1.0
      output_maps = grid_sample(input, grid, canvas=None)
      return output_maps, source_coordinate

    # elif direction == 'warp':
    #   target_control_points = source_control_points.clone()
    #   source_control_points = (build_output_control_points(self.num_control_points, self.margins)).clone()
    #   source_control_points = source_control_points.unsqueeze(0)
    #   source_control_points = source_control_points.expand(target_control_points.size(0),self.num_control_points,2)
    #   assert source_control_points.ndimension() == 3
    #   assert source_control_points.size(1) == self.num_control_points
    #   assert source_control_points.size(2) == 2
    #   batch_size = source_control_points.size(0)

    #   Y = torch.cat([source_control_points.to('cuda'), self.padding_matrix.expand(batch_size, 3, 2)], 1)
    #   mapping_matrix = torch.matmul(self.inverse_kernel, Y)
    #   source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix)

    #   grid = source_coordinate.view(-1, self.target_height, self.target_width, 2)
    #   grid = torch.clamp(grid, 0, 1) # the source_control_points may be out of [0, 1].
    #   # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
    #   grid = 2.0 * grid - 1.0
    #   output_maps = grid_sample(input, grid, canvas=None)
    #   return output_maps, source_coordinate