qubvel-hf's picture
qubvel-hf HF Staff
Init project
c509e76
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d
webroot = 'http://dl.yf.io/drn/'
model_urls = {
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'drn-c-26': webroot + 'drn_c_26-ddedf421.pth',
'drn-c-42': webroot + 'drn_c_42-9d336e8c.pth',
'drn-c-58': webroot + 'drn_c_58-0a53a92c.pth',
'drn-d-22': webroot + 'drn_d_22-4bd2f8ea.pth',
'drn-d-38': webroot + 'drn_d_38-eebb45f0.pth',
'drn-d-54': webroot + 'drn_d_54-0e0534ff.pth',
'drn-d-105': webroot + 'drn_d_105-12b40979.pth'
}
def conv3x3(in_planes, out_planes, stride=1, padding=1, dilation=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=padding, bias=False, dilation=dilation)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,
dilation=(1, 1), residual=True, BatchNorm=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride,
padding=dilation[0], dilation=dilation[0])
self.bn1 = BatchNorm(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes,
padding=dilation[1], dilation=dilation[1])
self.bn2 = BatchNorm(planes)
self.downsample = downsample
self.stride = stride
self.residual = residual
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
if self.residual:
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None,
dilation=(1, 1), residual=True, BatchNorm=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=dilation[1], bias=False,
dilation=dilation[1])
self.bn2 = BatchNorm(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = BatchNorm(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class DRN(nn.Module):
def __init__(self, block, layers, arch='D',
channels=(16, 32, 64, 128, 256, 512, 512, 512),
BatchNorm=None):
super(DRN, self).__init__()
self.inplanes = channels[0]
self.out_dim = channels[-1]
self.arch = arch
if arch == 'C':
self.conv1 = nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
padding=3, bias=False)
self.bn1 = BatchNorm(channels[0])
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(
BasicBlock, channels[0], layers[0], stride=1, BatchNorm=BatchNorm)
self.layer2 = self._make_layer(
BasicBlock, channels[1], layers[1], stride=2, BatchNorm=BatchNorm)
elif arch == 'D':
self.layer0 = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3,
bias=False),
BatchNorm(channels[0]),
nn.ReLU(inplace=True)
)
self.layer1 = self._make_conv_layers(
channels[0], layers[0], stride=1, BatchNorm=BatchNorm)
self.layer2 = self._make_conv_layers(
channels[1], layers[1], stride=2, BatchNorm=BatchNorm)
self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2, BatchNorm=BatchNorm)
self.layer4 = self._make_layer(block, channels[3], layers[3], stride=2, BatchNorm=BatchNorm)
self.layer5 = self._make_layer(block, channels[4], layers[4],
dilation=2, new_level=False, BatchNorm=BatchNorm)
self.layer6 = None if layers[5] == 0 else \
self._make_layer(block, channels[5], layers[5], dilation=4,
new_level=False, BatchNorm=BatchNorm)
if arch == 'C':
self.layer7 = None if layers[6] == 0 else \
self._make_layer(BasicBlock, channels[6], layers[6], dilation=2,
new_level=False, residual=False, BatchNorm=BatchNorm)
self.layer8 = None if layers[7] == 0 else \
self._make_layer(BasicBlock, channels[7], layers[7], dilation=1,
new_level=False, residual=False, BatchNorm=BatchNorm)
elif arch == 'D':
self.layer7 = None if layers[6] == 0 else \
self._make_conv_layers(channels[6], layers[6], dilation=2, BatchNorm=BatchNorm)
self.layer8 = None if layers[7] == 0 else \
self._make_conv_layers(channels[7], layers[7], dilation=1, BatchNorm=BatchNorm)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, SynchronizedBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1,
new_level=True, residual=True, BatchNorm=None):
assert dilation == 1 or dilation % 2 == 0
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm(planes * block.expansion),
)
layers = list()
layers.append(block(
self.inplanes, planes, stride, downsample,
dilation=(1, 1) if dilation == 1 else (
dilation // 2 if new_level else dilation, dilation),
residual=residual, BatchNorm=BatchNorm))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, residual=residual,
dilation=(dilation, dilation), BatchNorm=BatchNorm))
return nn.Sequential(*layers)
def _make_conv_layers(self, channels, convs, stride=1, dilation=1, BatchNorm=None):
modules = []
for i in range(convs):
modules.extend([
nn.Conv2d(self.inplanes, channels, kernel_size=3,
stride=stride if i == 0 else 1,
padding=dilation, bias=False, dilation=dilation),
BatchNorm(channels),
nn.ReLU(inplace=True)])
self.inplanes = channels
return nn.Sequential(*modules)
def forward(self, x):
if self.arch == 'C':
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
elif self.arch == 'D':
x = self.layer0(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
low_level_feat = x
x = self.layer4(x)
x = self.layer5(x)
if self.layer6 is not None:
x = self.layer6(x)
if self.layer7 is not None:
x = self.layer7(x)
if self.layer8 is not None:
x = self.layer8(x)
return x, low_level_feat
class DRN_A(nn.Module):
def __init__(self, block, layers, BatchNorm=None):
self.inplanes = 64
super(DRN_A, self).__init__()
self.out_dim = 512 * block.expansion
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = BatchNorm(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], BatchNorm=BatchNorm)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, BatchNorm=BatchNorm)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
dilation=2, BatchNorm=BatchNorm)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=4, BatchNorm=BatchNorm)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, SynchronizedBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, BatchNorm=BatchNorm))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,
dilation=(dilation, dilation, ), BatchNorm=BatchNorm))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def drn_a_50(BatchNorm, pretrained=True):
model = DRN_A(Bottleneck, [3, 4, 6, 3], BatchNorm=BatchNorm)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def drn_c_26(BatchNorm, pretrained=True):
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='C', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-c-26'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_c_42(BatchNorm, pretrained=True):
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-c-42'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_c_58(BatchNorm, pretrained=True):
model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-c-58'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_d_22(BatchNorm, pretrained=True):
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='D', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-d-22'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_d_24(BatchNorm, pretrained=True):
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 2, 2], arch='D', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-d-24'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_d_38(BatchNorm, pretrained=True):
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-d-38'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_d_40(BatchNorm, pretrained=True):
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 2, 2], arch='D', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-d-40'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_d_54(BatchNorm, pretrained=True):
model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-d-54'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
def drn_d_105(BatchNorm, pretrained=True):
model = DRN(Bottleneck, [1, 1, 3, 4, 23, 3, 1, 1], arch='D', BatchNorm=BatchNorm)
if pretrained:
pretrained = model_zoo.load_url(model_urls['drn-d-105'])
del pretrained['fc.weight']
del pretrained['fc.bias']
model.load_state_dict(pretrained)
return model
if __name__ == "__main__":
import torch
model = drn_a_50(BatchNorm=nn.BatchNorm2d, pretrained=True)
input = torch.rand(1, 3, 512, 512)
output, low_level_feat = model(input)
print(output.size())
print(low_level_feat.size())