|
import torch.nn as nn |
|
import math |
|
import torch.utils.model_zoo as model_zoo |
|
from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d |
|
|
|
webroot = 'http://dl.yf.io/drn/' |
|
|
|
model_urls = { |
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
'drn-c-26': webroot + 'drn_c_26-ddedf421.pth', |
|
'drn-c-42': webroot + 'drn_c_42-9d336e8c.pth', |
|
'drn-c-58': webroot + 'drn_c_58-0a53a92c.pth', |
|
'drn-d-22': webroot + 'drn_d_22-4bd2f8ea.pth', |
|
'drn-d-38': webroot + 'drn_d_38-eebb45f0.pth', |
|
'drn-d-54': webroot + 'drn_d_54-0e0534ff.pth', |
|
'drn-d-105': webroot + 'drn_d_105-12b40979.pth' |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, padding=1, dilation=1): |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=padding, bias=False, dilation=dilation) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, |
|
dilation=(1, 1), residual=True, BatchNorm=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride, |
|
padding=dilation[0], dilation=dilation[0]) |
|
self.bn1 = BatchNorm(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes, |
|
padding=dilation[1], dilation=dilation[1]) |
|
self.bn2 = BatchNorm(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.residual = residual |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
if self.residual: |
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, |
|
dilation=(1, 1), residual=True, BatchNorm=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = BatchNorm(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=dilation[1], bias=False, |
|
dilation=dilation[1]) |
|
self.bn2 = BatchNorm(planes) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = BatchNorm(planes * 4) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class DRN(nn.Module): |
|
|
|
def __init__(self, block, layers, arch='D', |
|
channels=(16, 32, 64, 128, 256, 512, 512, 512), |
|
BatchNorm=None): |
|
super(DRN, self).__init__() |
|
self.inplanes = channels[0] |
|
self.out_dim = channels[-1] |
|
self.arch = arch |
|
|
|
if arch == 'C': |
|
self.conv1 = nn.Conv2d(3, channels[0], kernel_size=7, stride=1, |
|
padding=3, bias=False) |
|
self.bn1 = BatchNorm(channels[0]) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer( |
|
BasicBlock, channels[0], layers[0], stride=1, BatchNorm=BatchNorm) |
|
self.layer2 = self._make_layer( |
|
BasicBlock, channels[1], layers[1], stride=2, BatchNorm=BatchNorm) |
|
|
|
elif arch == 'D': |
|
self.layer0 = nn.Sequential( |
|
nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, |
|
bias=False), |
|
BatchNorm(channels[0]), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.layer1 = self._make_conv_layers( |
|
channels[0], layers[0], stride=1, BatchNorm=BatchNorm) |
|
self.layer2 = self._make_conv_layers( |
|
channels[1], layers[1], stride=2, BatchNorm=BatchNorm) |
|
|
|
self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2, BatchNorm=BatchNorm) |
|
self.layer4 = self._make_layer(block, channels[3], layers[3], stride=2, BatchNorm=BatchNorm) |
|
self.layer5 = self._make_layer(block, channels[4], layers[4], |
|
dilation=2, new_level=False, BatchNorm=BatchNorm) |
|
self.layer6 = None if layers[5] == 0 else \ |
|
self._make_layer(block, channels[5], layers[5], dilation=4, |
|
new_level=False, BatchNorm=BatchNorm) |
|
|
|
if arch == 'C': |
|
self.layer7 = None if layers[6] == 0 else \ |
|
self._make_layer(BasicBlock, channels[6], layers[6], dilation=2, |
|
new_level=False, residual=False, BatchNorm=BatchNorm) |
|
self.layer8 = None if layers[7] == 0 else \ |
|
self._make_layer(BasicBlock, channels[7], layers[7], dilation=1, |
|
new_level=False, residual=False, BatchNorm=BatchNorm) |
|
elif arch == 'D': |
|
self.layer7 = None if layers[6] == 0 else \ |
|
self._make_conv_layers(channels[6], layers[6], dilation=2, BatchNorm=BatchNorm) |
|
self.layer8 = None if layers[7] == 0 else \ |
|
self._make_conv_layers(channels[7], layers[7], dilation=1, BatchNorm=BatchNorm) |
|
|
|
self._init_weight() |
|
|
|
def _init_weight(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, SynchronizedBatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, |
|
new_level=True, residual=True, BatchNorm=None): |
|
assert dilation == 1 or dilation % 2 == 0 |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
BatchNorm(planes * block.expansion), |
|
) |
|
|
|
layers = list() |
|
layers.append(block( |
|
self.inplanes, planes, stride, downsample, |
|
dilation=(1, 1) if dilation == 1 else ( |
|
dilation // 2 if new_level else dilation, dilation), |
|
residual=residual, BatchNorm=BatchNorm)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, residual=residual, |
|
dilation=(dilation, dilation), BatchNorm=BatchNorm)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_conv_layers(self, channels, convs, stride=1, dilation=1, BatchNorm=None): |
|
modules = [] |
|
for i in range(convs): |
|
modules.extend([ |
|
nn.Conv2d(self.inplanes, channels, kernel_size=3, |
|
stride=stride if i == 0 else 1, |
|
padding=dilation, bias=False, dilation=dilation), |
|
BatchNorm(channels), |
|
nn.ReLU(inplace=True)]) |
|
self.inplanes = channels |
|
return nn.Sequential(*modules) |
|
|
|
def forward(self, x): |
|
if self.arch == 'C': |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
elif self.arch == 'D': |
|
x = self.layer0(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
|
|
x = self.layer3(x) |
|
low_level_feat = x |
|
|
|
x = self.layer4(x) |
|
x = self.layer5(x) |
|
|
|
if self.layer6 is not None: |
|
x = self.layer6(x) |
|
|
|
if self.layer7 is not None: |
|
x = self.layer7(x) |
|
|
|
if self.layer8 is not None: |
|
x = self.layer8(x) |
|
|
|
return x, low_level_feat |
|
|
|
|
|
class DRN_A(nn.Module): |
|
|
|
def __init__(self, block, layers, BatchNorm=None): |
|
self.inplanes = 64 |
|
super(DRN_A, self).__init__() |
|
self.out_dim = 512 * block.expansion |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = BatchNorm(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0], BatchNorm=BatchNorm) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, BatchNorm=BatchNorm) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, |
|
dilation=2, BatchNorm=BatchNorm) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, |
|
dilation=4, BatchNorm=BatchNorm) |
|
|
|
self._init_weight() |
|
|
|
def _init_weight(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, SynchronizedBatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
BatchNorm(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, BatchNorm=BatchNorm)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, |
|
dilation=(dilation, dilation, ), BatchNorm=BatchNorm)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
return x |
|
|
|
def drn_a_50(BatchNorm, pretrained=True): |
|
model = DRN_A(Bottleneck, [3, 4, 6, 3], BatchNorm=BatchNorm) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) |
|
return model |
|
|
|
|
|
def drn_c_26(BatchNorm, pretrained=True): |
|
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='C', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-c-26']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_c_42(BatchNorm, pretrained=True): |
|
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-c-42']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_c_58(BatchNorm, pretrained=True): |
|
model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-c-58']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_d_22(BatchNorm, pretrained=True): |
|
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='D', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-d-22']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_d_24(BatchNorm, pretrained=True): |
|
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 2, 2], arch='D', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-d-24']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_d_38(BatchNorm, pretrained=True): |
|
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-d-38']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_d_40(BatchNorm, pretrained=True): |
|
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 2, 2], arch='D', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-d-40']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_d_54(BatchNorm, pretrained=True): |
|
model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-d-54']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
|
|
def drn_d_105(BatchNorm, pretrained=True): |
|
model = DRN(Bottleneck, [1, 1, 3, 4, 23, 3, 1, 1], arch='D', BatchNorm=BatchNorm) |
|
if pretrained: |
|
pretrained = model_zoo.load_url(model_urls['drn-d-105']) |
|
del pretrained['fc.weight'] |
|
del pretrained['fc.bias'] |
|
model.load_state_dict(pretrained) |
|
return model |
|
|
|
if __name__ == "__main__": |
|
import torch |
|
model = drn_a_50(BatchNorm=nn.BatchNorm2d, pretrained=True) |
|
input = torch.rand(1, 3, 512, 512) |
|
output, low_level_feat = model(input) |
|
print(output.size()) |
|
print(low_level_feat.size()) |
|
|