|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d |
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, num_classes, backbone, BatchNorm): |
|
super(Decoder, self).__init__() |
|
if backbone == 'resnet' or backbone == 'drn': |
|
low_level_inplanes = 256 |
|
elif backbone == 'xception': |
|
low_level_inplanes = 128 |
|
elif backbone == 'mobilenet': |
|
low_level_inplanes = 24 |
|
else: |
|
raise NotImplementedError |
|
|
|
self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False) |
|
self.bn1 = BatchNorm(48) |
|
self.relu = nn.ReLU() |
|
self.last_conv = nn.Sequential(nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False), |
|
BatchNorm(256), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), |
|
BatchNorm(256), |
|
nn.ReLU(), |
|
nn.Dropout(0.1), |
|
nn.Conv2d(256, num_classes, kernel_size=1, stride=1), |
|
nn.Sigmoid() |
|
) |
|
self._init_weight() |
|
|
|
|
|
def forward(self, x, low_level_feat): |
|
low_level_feat = self.conv1(low_level_feat) |
|
low_level_feat = self.bn1(low_level_feat) |
|
low_level_feat = self.relu(low_level_feat) |
|
|
|
x = F.interpolate(x, size=low_level_feat.size()[2:], mode='bilinear', align_corners=True) |
|
x = torch.cat((x, low_level_feat), dim=1) |
|
x = self.last_conv(x) |
|
|
|
return x |
|
|
|
def _init_weight(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
torch.nn.init.kaiming_normal_(m.weight) |
|
elif isinstance(m, SynchronizedBatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def build_decoder(num_classes, backbone, BatchNorm): |
|
return Decoder(num_classes, backbone, BatchNorm) |