Spaces:
Sleeping
Sleeping
File size: 25,853 Bytes
c9e6001 bbb1840 c9e6001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
#!/usr/bin/env python3
"""Script to run the inference of text-to-speeech model."""
import argparse
import logging
import shutil
import sys
import time
from pathlib import Path
from typing import Any, Dict, Optional, Sequence, Tuple, Union
import numpy as np
import soundfile.py as sf
import torch
from packaging.version import parse as V
from typeguard import typechecked
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.gan_tts.vits import VITS
from espnet2.tasks.tts import TTSTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.tts.fastspeech import FastSpeech
from espnet2.tts.fastspeech2 import FastSpeech2
from espnet2.tts.tacotron2 import Tacotron2
from espnet2.tts.transformer import Transformer
from espnet2.tts.utils import DurationCalculator
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.utils.cli_utils import get_commandline_args
class Text2Speech:
"""Text2Speech class.
Examples:
>>> from espnet2.bin.tts_inference import Text2Speech
>>> # Case 1: Load the local model and use Griffin-Lim vocoder
>>> text2speech = Text2Speech(
>>> train_config="/path/to/config.yml",
>>> model_file="/path/to/model.pth",
>>> )
>>> # Case 2: Load the local model and the pretrained vocoder
>>> text2speech = Text2Speech.from_pretrained(
>>> train_config="/path/to/config.yml",
>>> model_file="/path/to/model.pth",
>>> vocoder_tag="kan-bayashi/ljspeech_tacotron2",
>>> )
>>> # Case 3: Load the pretrained model and use Griffin-Lim vocoder
>>> text2speech = Text2Speech.from_pretrained(
>>> model_tag="kan-bayashi/ljspeech_tacotron2",
>>> )
>>> # Case 4: Load the pretrained model and the pretrained vocoder
>>> text2speech = Text2Speech.from_pretrained(
>>> model_tag="kan-bayashi/ljspeech_tacotron2",
>>> vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v1",
>>> )
>>> # Run inference and save as wav file
>>> import soundfile as sf
>>> wav = text2speech("Hello, World")["wav"]
>>> sf.write("out.wav", wav.numpy(), text2speech.fs, "PCM_16")
"""
@typechecked
def __init__(
self,
train_config: Union[Path, str, None] = None,
model_file: Union[Path, str, None] = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 10.0,
use_teacher_forcing: bool = False,
use_att_constraint: bool = False,
backward_window: int = 1,
forward_window: int = 3,
speed_control_alpha: float = 1.0,
noise_scale: float = 0.667,
noise_scale_dur: float = 0.8,
vocoder_config: Union[Path, str, None] = None,
vocoder_file: Union[Path, str, None] = None,
dtype: str = "float32",
device: str = "cpu",
seed: int = 777,
always_fix_seed: bool = False,
prefer_normalized_feats: bool = False,
):
"""Initialize Text2Speech module."""
# setup model
model, train_args = TTSTask.build_model_from_file(
train_config, model_file, device
)
model.to(dtype=getattr(torch, dtype)).eval()
self.device = device
self.dtype = dtype
self.train_args = train_args
self.model = model
self.tts = model.tts
self.normalize = model.normalize
self.feats_extract = model.feats_extract
self.duration_calculator = DurationCalculator()
self.preprocess_fn = TTSTask.build_preprocess_fn(train_args, False)
self.use_teacher_forcing = use_teacher_forcing
self.seed = seed
self.always_fix_seed = always_fix_seed
self.vocoder = None
self.prefer_normalized_feats = prefer_normalized_feats
if self.tts.require_vocoder:
vocoder = TTSTask.build_vocoder_from_file(
vocoder_config, vocoder_file, model, device
)
if isinstance(vocoder, torch.nn.Module):
vocoder.to(dtype=getattr(torch, dtype)).eval()
self.vocoder = vocoder
logging.info(f"Extractor:\n{self.feats_extract}")
logging.info(f"Normalizer:\n{self.normalize}")
logging.info(f"TTS:\n{self.tts}")
if self.vocoder is not None:
logging.info(f"Vocoder:\n{self.vocoder}")
# setup decoding config
decode_conf = {}
decode_conf.update(use_teacher_forcing=use_teacher_forcing)
if isinstance(self.tts, (Tacotron2, Transformer)):
decode_conf.update(
threshold=threshold,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
)
if isinstance(self.tts, Tacotron2):
decode_conf.update(
use_att_constraint=use_att_constraint,
forward_window=forward_window,
backward_window=backward_window,
)
if isinstance(self.tts, (FastSpeech, FastSpeech2, VITS)):
decode_conf.update(alpha=speed_control_alpha)
if isinstance(self.tts, VITS):
decode_conf.update(
noise_scale=noise_scale,
noise_scale_dur=noise_scale_dur,
)
self.decode_conf = decode_conf
@torch.no_grad()
@typechecked
def __call__(
self,
text: Union[str, torch.Tensor, np.ndarray],
speech: Union[torch.Tensor, np.ndarray, None] = None,
durations: Union[torch.Tensor, np.ndarray, None] = None,
spembs: Union[torch.Tensor, np.ndarray, None] = None,
sids: Union[torch.Tensor, np.ndarray, None] = None,
lids: Union[torch.Tensor, np.ndarray, None] = None,
decode_conf: Optional[Dict[str, Any]] = None,
) -> Dict[str, torch.Tensor]:
"""Run text-to-speech."""
# check inputs
if self.use_speech and speech is None:
raise RuntimeError("Missing required argument: 'speech'")
if self.use_sids and sids is None:
raise RuntimeError("Missing required argument: 'sids'")
if self.use_lids and lids is None:
raise RuntimeError("Missing required argument: 'lids'")
if self.use_spembs and spembs is None:
raise RuntimeError("Missing required argument: 'spembs'")
# prepare batch
if isinstance(text, str):
text = self.preprocess_fn("<dummy>", dict(text=text))["text"]
batch = dict(text=text)
if speech is not None:
batch.update(speech=speech)
if durations is not None:
batch.update(durations=durations)
if spembs is not None:
batch.update(spembs=spembs)
if sids is not None:
batch.update(sids=sids)
if lids is not None:
batch.update(lids=lids)
batch = to_device(batch, self.device)
# overwrite the decode configs if provided
cfg = self.decode_conf
if decode_conf is not None:
cfg = self.decode_conf.copy()
cfg.update(decode_conf)
# inference
if self.always_fix_seed:
set_all_random_seed(self.seed)
output_dict = self.model.inference(**batch, **cfg)
# calculate additional metrics
if output_dict.get("att_w") is not None:
duration, focus_rate = self.duration_calculator(output_dict["att_w"])
output_dict.update(duration=duration, focus_rate=focus_rate)
# apply vocoder (mel-to-wav)
if self.vocoder is not None:
if (
self.prefer_normalized_feats
or output_dict.get("feat_gen_denorm") is None
):
input_feat = output_dict["feat_gen"]
else:
input_feat = output_dict["feat_gen_denorm"]
wav = self.vocoder(input_feat)
output_dict.update(wav=wav)
return output_dict
@property
def fs(self) -> Optional[int]:
"""Return sampling rate."""
if hasattr(self.vocoder, "fs"):
return self.vocoder.fs
elif hasattr(self.tts, "fs"):
return self.tts.fs
else:
return None
@property
def use_speech(self) -> bool:
"""Return speech is needed or not in the inference."""
return self.use_teacher_forcing or getattr(self.tts, "use_gst", False)
@property
def use_sids(self) -> bool:
"""Return sid is needed or not in the inference."""
return self.tts.spks is not None
@property
def use_lids(self) -> bool:
"""Return sid is needed or not in the inference."""
return self.tts.langs is not None
@property
def use_spembs(self) -> bool:
"""Return spemb is needed or not in the inference."""
return self.tts.spk_embed_dim is not None
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
vocoder_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build Text2Speech instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
vocoder_tag (Optional[str]): Vocoder tag of the pretrained vocoders.
Currently, the tags of parallel_wavegan are supported, which should
start with the prefix "parallel_wavegan/".
Returns:
Text2Speech: Text2Speech instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
if vocoder_tag is not None:
if vocoder_tag.startswith("parallel_wavegan/"):
try:
from parallel_wavegan.utils import download_pretrained_model
except ImportError:
logging.error(
"`parallel_wavegan` is not installed. "
"Please install via `pip install -U parallel_wavegan`."
)
raise
from parallel_wavegan import __version__
# NOTE(kan-bayashi): Filelock download is supported from 0.5.2
assert V(__version__) > V("0.5.1"), (
"Please install the latest parallel_wavegan "
"via `pip install -U parallel_wavegan`."
)
vocoder_tag = vocoder_tag.replace("parallel_wavegan/", "")
vocoder_file = download_pretrained_model(vocoder_tag)
vocoder_config = Path(vocoder_file).parent / "config.yml"
kwargs.update(vocoder_config=vocoder_config, vocoder_file=vocoder_file)
else:
raise ValueError(f"{vocoder_tag} is unsupported format.")
return Text2Speech(**kwargs)
@typechecked
def inference(
output_dir: Union[Path, str],
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
model_tag: Optional[str],
threshold: float,
minlenratio: float,
maxlenratio: float,
use_teacher_forcing: bool,
use_att_constraint: bool,
backward_window: int,
forward_window: int,
speed_control_alpha: float,
noise_scale: float,
noise_scale_dur: float,
always_fix_seed: bool,
allow_variable_data_keys: bool,
vocoder_config: Optional[str],
vocoder_file: Optional[str],
vocoder_tag: Optional[str],
):
"""Run text-to-speech inference."""
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build model
text2speech_kwargs = dict(
train_config=train_config,
model_file=model_file,
threshold=threshold,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
use_teacher_forcing=use_teacher_forcing,
use_att_constraint=use_att_constraint,
backward_window=backward_window,
forward_window=forward_window,
speed_control_alpha=speed_control_alpha,
noise_scale=noise_scale,
noise_scale_dur=noise_scale_dur,
vocoder_config=vocoder_config,
vocoder_file=vocoder_file,
dtype=dtype,
device=device,
seed=seed,
always_fix_seed=always_fix_seed,
)
text2speech = Text2Speech.from_pretrained(
model_tag=model_tag,
vocoder_tag=vocoder_tag,
**text2speech_kwargs,
)
# 3. Build data-iterator
if not text2speech.use_speech:
data_path_and_name_and_type = list(
filter(lambda x: x[1] != "speech", data_path_and_name_and_type)
)
loader = TTSTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=TTSTask.build_preprocess_fn(text2speech.train_args, False),
collate_fn=TTSTask.build_collate_fn(text2speech.train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
output_dir = Path(output_dir)
(output_dir / "norm").mkdir(parents=True, exist_ok=True)
(output_dir / "denorm").mkdir(parents=True, exist_ok=True)
(output_dir / "speech_shape").mkdir(parents=True, exist_ok=True)
(output_dir / "wav").mkdir(parents=True, exist_ok=True)
(output_dir / "att_ws").mkdir(parents=True, exist_ok=True)
(output_dir / "probs").mkdir(parents=True, exist_ok=True)
(output_dir / "durations").mkdir(parents=True, exist_ok=True)
(output_dir / "focus_rates").mkdir(parents=True, exist_ok=True)
# Lazy load to avoid the backend error
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
with NpyScpWriter(
output_dir / "norm",
output_dir / "norm/feats.scp",
) as norm_writer, NpyScpWriter(
output_dir / "denorm", output_dir / "denorm/feats.scp"
) as denorm_writer, open(
output_dir / "speech_shape/speech_shape", "w"
) as shape_writer, open(
output_dir / "durations/durations", "w"
) as duration_writer, open(
output_dir / "focus_rates/focus_rates", "w"
) as focus_rate_writer:
for idx, (keys, batch) in enumerate(loader, 1):
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert _bs == 1, _bs
# Change to single sequence and remove *_length
# because inference() requires 1-seq, not mini-batch.
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
start_time = time.perf_counter()
output_dict = text2speech(**batch)
key = keys[0]
insize = next(iter(batch.values())).size(0) + 1
if output_dict.get("feat_gen") is not None:
# standard text2mel model case
feat_gen = output_dict["feat_gen"]
logging.info(
"inference speed = {:.1f} frames / sec.".format(
int(feat_gen.size(0)) / (time.perf_counter() - start_time)
)
)
logging.info(f"{key} (size:{insize}->{feat_gen.size(0)})")
if feat_gen.size(0) == insize * maxlenratio:
logging.warning(f"output length reaches maximum length ({key}).")
norm_writer[key] = output_dict["feat_gen"].cpu().numpy()
shape_writer.write(
f"{key} " + ",".join(map(str, output_dict["feat_gen"].shape)) + "\n"
)
if output_dict.get("feat_gen_denorm") is not None:
denorm_writer[key] = output_dict["feat_gen_denorm"].cpu().numpy()
else:
# end-to-end text2wav model case
wav = output_dict["wav"]
logging.info(
"inference speed = {:.1f} points / sec.".format(
int(wav.size(0)) / (time.perf_counter() - start_time)
)
)
logging.info(f"{key} (size:{insize}->{wav.size(0)})")
if output_dict.get("duration") is not None:
# Save duration and fucus rates
duration_writer.write(
f"{key} "
+ " ".join(map(str, output_dict["duration"].long().cpu().numpy()))
+ "\n"
)
if output_dict.get("focus_rate") is not None:
focus_rate_writer.write(
f"{key} {float(output_dict['focus_rate']):.5f}\n"
)
if output_dict.get("att_w") is not None:
# Plot attention weight
att_w = output_dict["att_w"].cpu().numpy()
if att_w.ndim == 2:
att_w = att_w[None][None]
elif att_w.ndim != 4:
raise RuntimeError(f"Must be 2 or 4 dimension: {att_w.ndim}")
w, h = plt.figaspect(att_w.shape[0] / att_w.shape[1])
fig = plt.Figure(
figsize=(
w * 1.3 * min(att_w.shape[0], 2.5),
h * 1.3 * min(att_w.shape[1], 2.5),
)
)
fig.suptitle(f"{key}")
axes = fig.subplots(att_w.shape[0], att_w.shape[1])
if len(att_w) == 1:
axes = [[axes]]
for ax, att_w in zip(axes, att_w):
for ax_, att_w_ in zip(ax, att_w):
ax_.imshow(att_w_.astype(np.float32), aspect="auto")
ax_.set_xlabel("Input")
ax_.set_ylabel("Output")
ax_.xaxis.set_major_locator(MaxNLocator(integer=True))
ax_.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.set_tight_layout({"rect": [0, 0.03, 1, 0.95]})
fig.savefig(output_dir / f"att_ws/{key}.png")
fig.clf()
if output_dict.get("prob") is not None:
# Plot stop token prediction
prob = output_dict["prob"].cpu().numpy()
fig = plt.Figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(prob)
ax.set_title(f"{key}")
ax.set_xlabel("Output")
ax.set_ylabel("Stop probability")
ax.set_ylim(0, 1)
ax.grid(which="both")
fig.set_tight_layout(True)
fig.savefig(output_dir / f"probs/{key}.png")
fig.clf()
if output_dict.get("wav") is not None:
# TODO(kamo): Write scp
sf.write(
f"{output_dir}/wav/{key}.wav",
output_dict["wav"].cpu().numpy(),
text2speech.fs,
"PCM_16",
)
# remove files if those are not included in output dict
if output_dict.get("feat_gen") is None:
shutil.rmtree(output_dir / "norm")
if output_dict.get("feat_gen_denorm") is None:
shutil.rmtree(output_dir / "denorm")
if output_dict.get("att_w") is None:
shutil.rmtree(output_dir / "att_ws")
if output_dict.get("duration") is None:
shutil.rmtree(output_dir / "durations")
if output_dict.get("focus_rate") is None:
shutil.rmtree(output_dir / "focus_rates")
if output_dict.get("prob") is None:
shutil.rmtree(output_dir / "probs")
if output_dict.get("wav") is None:
shutil.rmtree(output_dir / "wav")
def get_parser():
"""Get argument parser."""
parser = config_argparse.ArgumentParser(
description="TTS inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use "_" instead of "-" as separator.
# "-" is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The path of output directory",
)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Random seed",
)
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument(
"--key_file",
type=str_or_none,
)
group.add_argument(
"--allow_variable_data_keys",
type=str2bool,
default=False,
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--train_config",
type=str,
help="Training configuration file",
)
group.add_argument(
"--model_file",
type=str,
help="Model parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, train_config and "
"model_file will be overwritten",
)
group = parser.add_argument_group("Decoding related")
group.add_argument(
"--maxlenratio",
type=float,
default=10.0,
help="Maximum length ratio in decoding",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Minimum length ratio in decoding",
)
group.add_argument(
"--threshold",
type=float,
default=0.5,
help="Threshold value in decoding",
)
group.add_argument(
"--use_att_constraint",
type=str2bool,
default=False,
help="Whether to use attention constraint",
)
group.add_argument(
"--backward_window",
type=int,
default=1,
help="Backward window value in attention constraint",
)
group.add_argument(
"--forward_window",
type=int,
default=3,
help="Forward window value in attention constraint",
)
group.add_argument(
"--use_teacher_forcing",
type=str2bool,
default=False,
help="Whether to use teacher forcing",
)
parser.add_argument(
"--speed_control_alpha",
type=float,
default=1.0,
help="Alpha in FastSpeech to change the speed of generated speech",
)
parser.add_argument(
"--noise_scale",
type=float,
default=0.667,
help="Noise scale parameter for the flow in vits",
)
parser.add_argument(
"--noise_scale_dur",
type=float,
default=0.8,
help="Noise scale parameter for the stochastic duration predictor in vits",
)
group.add_argument(
"--always_fix_seed",
type=str2bool,
default=False,
help="Whether to always fix seed",
)
group = parser.add_argument_group("Vocoder related")
group.add_argument(
"--vocoder_config",
type=str_or_none,
help="Vocoder configuration file",
)
group.add_argument(
"--vocoder_file",
type=str_or_none,
help="Vocoder parameter file",
)
group.add_argument(
"--vocoder_tag",
type=str,
help="Pretrained vocoder tag. If specify this option, vocoder_config and "
"vocoder_file will be overwritten",
)
return parser
def main(cmd=None):
"""Run TTS model inference."""
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()
|