ChatGLM-CPP / app.py
None1145's picture
Update app.py
0afeba3 verified
raw
history blame
2.74 kB
import gradio as gr
import os
import time
from huggingface_hub import InferenceClient
from huggingface_hub import hf_hub_download
import chatglm_cpp
pipeline = None
def load(repo_id, filename):
global pipeline
local_dir = f"./Models/{repo_id}"
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
model = os.path.join(local_dir, filename)
max_length = 8192
pipeline = chatglm_cpp.Pipeline(model, max_length=max_length)
return f"Model {filename} from {repo_id} loaded successfully."
load("None1145/ChatGLM3-6B-Theresa-GGML", "ChatGLM3-6B-Theresa-GGML-Q4_0.bin")
messages = []
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
global messages
if pipeline is None:
yield "Error: No model loaded. Please load a model first."
return
response = "..."
for _ in range(0, 3):
yield response
time.sleep(1)
response += " ..."
generation_kwargs = dict(
max_length=8192,
max_context_length=max_tokens,
do_sample=temperature > 0,
top_k=0,
top_p=top_p,
temperature=temperature,
repetition_penalty=1.0,
stream=True,
)
if messages == []:
messages = [chatglm_cpp.ChatMessage(role="system", content=system_message)]
messages.append(chatglm_cpp.ChatMessage(role="user", content=message))
response = ""
for chunk in pipeline.chat(messages, **generation_kwargs):
response += chunk.content
yield response
messages.append(chatglm_cpp.ChatMessage(role="assistant", content=response))
with gr.Blocks() as chat:
with gr.Row():
repo_id_input = gr.Textbox(label="Repo ID", value="None1145/ChatGLM3-6B-Theresa-GGML")
filename_input = gr.Textbox(label="Filename", value="ChatGLM3-6B-Theresa-GGML-Q4_0.bin")
load_button = gr.Button("Load Model")
load_status = gr.Textbox(label="Load Status", interactive=False)
load_button.click(load, inputs=[repo_id_input, filename_input], outputs=load_status)
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
chat.launch()