Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import time | |
from huggingface_hub import InferenceClient | |
from huggingface_hub import hf_hub_download | |
import chatglm_cpp | |
pipeline = None | |
def load(repo_id, filename): | |
global pipeline | |
local_dir = f"./Models/{repo_id}" | |
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) | |
model = os.path.join(local_dir, filename) | |
max_length = 8192 | |
pipeline = chatglm_cpp.Pipeline(model, max_length=max_length) | |
return f"Model {filename} from {repo_id} loaded successfully." | |
load("None1145/ChatGLM3-6B-Theresa-GGML", "ChatGLM3-6B-Theresa-GGML-Q4_0.bin") | |
messages = [] | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
global messages | |
if pipeline is None: | |
yield "Error: No model loaded. Please load a model first." | |
return | |
response = "..." | |
for _ in range(0, 3): | |
yield response | |
time.sleep(1) | |
response += " ..." | |
generation_kwargs = dict( | |
max_length=8192, | |
max_context_length=max_tokens, | |
do_sample=temperature > 0, | |
top_k=0, | |
top_p=top_p, | |
temperature=temperature, | |
repetition_penalty=1.0, | |
stream=True, | |
) | |
if messages == []: | |
messages = [chatglm_cpp.ChatMessage(role="system", content=system_message)] | |
messages.append(chatglm_cpp.ChatMessage(role="user", content=message)) | |
response = "" | |
for chunk in pipeline.chat(messages, **generation_kwargs): | |
response += chunk.content | |
yield response | |
messages.append(chatglm_cpp.ChatMessage(role="assistant", content=response)) | |
with gr.Blocks() as chat: | |
with gr.Row(): | |
repo_id_input = gr.Textbox(label="Repo ID", value="None1145/ChatGLM3-6B-Theresa-GGML") | |
filename_input = gr.Textbox(label="Filename", value="ChatGLM3-6B-Theresa-GGML-Q4_0.bin") | |
load_button = gr.Button("Load Model") | |
load_status = gr.Textbox(label="Load Status", interactive=False) | |
load_button.click(load, inputs=[repo_id_input, filename_input], outputs=load_status) | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
chat.launch() | |