import gradio as gr from huggingface_hub import InferenceClient from huggingface import hf_hub_download import chatglm_cpp def list_files_tree(directory, indent=""): items = os.listdir(directory) for i, item in enumerate(items): prefix = "└── " if i == len(items) - 1 else "├── " print(indent + prefix + item) item_path = os.path.join(directory, item) if os.path.isdir(item_path): next_indent = indent + (" " if i == len(items) - 1 else "│ ") list_files_tree(item_path, next_indent) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") repo_id = "None1145/ChatGLM3-6B-Theresa-GGML" filename = "ChatGLM3-6B-Theresa-GGML-Q4_0.bin" hf_hub_download(repo_id=repo_id, filename=filename, local_dir="./Models") list_files_tree("./Models") import time time.sleep(10) pipeline = chatglm_cpp.Pipeline(model, max_length=max_length) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()