File size: 2,550 Bytes
bdee176
 
 
05121a3
811f643
 
bdee176
7d3a98a
811f643
7d3a98a
811f643
 
6e75d7c
05121a3
94661bc
 
 
6e75d7c
 
 
05121a3
94661bc
 
 
6e75d7c
 
bdee176
05121a3
94661bc
6f014a9
 
9c11640
 
6f014a9
 
6e75d7c
 
 
b4b3e6a
 
bdee176
 
6f014a9
811f643
05121a3
bdee176
 
05121a3
06d3610
 
3d8ef37
bdee176
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
import gradio as gr

def compare_csv_files(max_num):
    df1 = pd.read_csv("fish-speech-1.5.csv")
    df2 = pd.read_csv("fish-speech-1.4.csv")
    
    merged_df = pd.merge(df1, df2, on="SourceText", suffixes=("_1.5", "_1.4"))
    
    merged_df["WordErrorRate_Diff"] = merged_df["WordErrorRate_1.5"] - merged_df["WordErrorRate_1.4"]
    merged_df["CharacterErrorRate_Diff"] = merged_df["CharacterErrorRate_1.5"] - merged_df["CharacterErrorRate_1.4"]
    
    merged_df["WordErrorRate_Comparison"] = merged_df["WordErrorRate_Diff"].apply(
        lambda x: "1.4 is the same as 1.5 (Ignored due to large diff)" if abs(x) > max_num else (
            f"1.5 is stronger than 1.4 ({x:.8f})" if x < 0 else (
                f"1.4 is stronger than 1.5 ({-x:.8f})" if x > 0 else "1.4 is the same as 1.5 (0)"
            )
        )
    )
    merged_df["CharacterErrorRate_Comparison"] = merged_df["CharacterErrorRate_Diff"].apply(
        lambda x: "1.4 is the same as 1.5 (Ignored due to large diff)" if abs(x) > max_num else (
            f"1.5 is stronger than 1.4 ({x:.8f})" if x < 0 else (
                f"1.4 is stronger than 1.5 ({-x:.8f})" if x > 0 else "1.4 is the same as 1.5 (0)"
            )
        )
    )
    
    avg_word_diff = merged_df["WordErrorRate_Diff"].loc[merged_df["WordErrorRate_Diff"].abs() <= max_num].mean()
    avg_char_diff = merged_df["CharacterErrorRate_Diff"].loc[merged_df["CharacterErrorRate_Diff"].abs() <= 1].mean()
    overall_summary = f"""
    <h3>Overall Comparison:</h3>
    <p>Average WordErrorRate Difference (excluding large diffs): {f'1.5 is stronger ({avg_word_diff:.8f})' if avg_word_diff < 0 else f'1.4 is stronger ({0 - avg_word_diff:.8f})'}</p>
    <p>Average CharacterErrorRate Difference (excluding large diffs): {f'1.5 is stronger ({avg_char_diff:.8f})' if avg_char_diff < 0 else f'1.4 is stronger ({0 - avg_char_diff:.8f})'}</p>
    """
    
    result = merged_df[[
        "SourceText",
        "WordErrorRate_1.5", "WordErrorRate_1.4", "WordErrorRate_Comparison",
        "CharacterErrorRate_1.5", "CharacterErrorRate_1.4", "CharacterErrorRate_Comparison",
        "WhisperText_1.5", "WhisperText_1.4"
    ]]
    
    return overall_summary + result.to_html(index=False)

max_num = gr.number(Number=10)
gr.Interface(
    fn=compare_csv_files,
    inputs=[max_num],
    outputs="html",
    title="Fish Speech Benchmark",
    description="This is a non official model performance test from Fish Speech / Whisper Base / More data will be added later (not too much)"
).launch()