File size: 2,001 Bytes
bdee176
 
 
 
811f643
 
bdee176
7d3a98a
811f643
7d3a98a
811f643
 
6e75d7c
811f643
 
6e75d7c
 
 
 
811f643
 
6e75d7c
 
bdee176
811f643
 
 
 
 
 
 
 
 
 
 
 
 
 
6e75d7c
 
 
811f643
 
bdee176
 
6e75d7c
bdee176
811f643
bdee176
 
 
7d3a98a
bdee176
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pandas as pd
import gradio as gr

def compare_csv_files():
    df1 = pd.read_csv("fish-speech-1.5.csv")
    df2 = pd.read_csv("fish-speech-1.4.csv")
    
    merged_df = pd.merge(df1, df2, on="SourceText", suffixes=("_1.5", "_1.4"))
    
    merged_df["WordErrorRate_Diff"] = merged_df["WordErrorRate_1.5"] - merged_df["WordErrorRate_1.4"]
    merged_df["CharacterErrorRate_Diff"] = merged_df["CharacterErrorRate_1.5"] - merged_df["CharacterErrorRate_1.4"]
    
    merged_df["WordErrorRate_Comparison"] = merged_df["WordErrorRate_Diff"].apply(
        lambda x: f"1.5 is stronger than 1.4 ({x:.8f})" if x > 0 else (
            f"1.4 is stronger than 1.5 ({-x:.8f})" if x < 0 else "1.4 is the same as 1.5 (0)"
        )
    )
    
    merged_df["CharacterErrorRate_Comparison"] = merged_df["CharacterErrorRate_Diff"].apply(
        lambda x: f"1.5 is stronger than 1.4 ({x:.8f})" if x > 0 else (
            f"1.4 is stronger than 1.5 ({-x:.8f})" if x < 0 else "1.4 is the same as 1.5 (0)"
        )
    )
    
    def overall_comparison(row):
        word_diff = row["WordErrorRate_Diff"]
        char_diff = row["CharacterErrorRate_Diff"]
        if word_diff > 0 and char_diff > 0:
            return "1.5 is overall stronger than 1.4"
        elif word_diff < 0 and char_diff < 0:
            return "1.4 is overall stronger than 1.5"
        elif word_diff == 0 and char_diff == 0:
            return "1.4 is the same as 1.5 overall"
        else:
            return "Mixed results: check individual metrics"
    
    merged_df["Overall_Comparison"] = merged_df.apply(overall_comparison, axis=1)
    
    result = merged_df[[
        "SourceText",
        "WordErrorRate_1.5", "WordErrorRate_1.4", "WordErrorRate_Comparison",
        "CharacterErrorRate_1.5", "CharacterErrorRate_1.4", "CharacterErrorRate_Comparison",
        "Overall_Comparison"
    ]]
    
    return result.to_html(index=False)


gr.Interface(
    fn=compare_csv_files,
    inputs=None,
    outputs="html"
).launch()