Spaces:
Runtime error
Runtime error
model = None | |
sid = "" | |
import io | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import soundfile | |
from inference.infer_tool import Svc | |
import os | |
def list_files_tree(directory, indent=""): | |
items = os.listdir(directory) | |
for i, item in enumerate(items): | |
prefix = "└── " if i == len(items) - 1 else "├── " | |
print(indent + prefix + item) | |
item_path = os.path.join(directory, item) | |
if os.path.isdir(item_path): | |
next_indent = indent + (" " if i == len(items) - 1 else "│ ") | |
list_files_tree(item_path, next_indent) | |
from huggingface_hub import snapshot_download | |
print("Models...") | |
models_id = """None1145/So-VITS-SVC-Vulpisfoglia""" | |
for model_id in models_id.split("\n"): | |
if model_id in ["", " "]: | |
break | |
print(f"{model_id}...") | |
snapshot_download(repo_id=model_id, local_dir=f"./Models/{model_id}") | |
print(f"{model_id}!!!") | |
print("Models!!!") | |
list_files_tree("./") | |
import re | |
models_info = {} | |
models_folder_path = "./Models/None1145" | |
folder_names = [name for name in os.listdir(models_folder_path) if os.path.isdir(os.path.join(models_folder_path, name))] | |
for folder_name in folder_names: | |
speaker = folder_name[12:] | |
pattern = re.compile(r"G_(\d+)\.pth$") | |
max_value = -1 | |
max_file = None | |
models_path = f"{models_folder_path}/{folder_name}/Models" | |
config_path = f"{models_folder_path}/{folder_name}/Configs" | |
for filename in os.listdir(models_path): | |
match = pattern.search(filename) | |
if match: | |
value = int(match.group(1)) | |
if value > max_value: | |
max_value = value | |
max_file = filename | |
models_info[speaker] = {} | |
models_info[speaker]["model"] = f"{models_path}/{max_file}" | |
models_info[speaker]["config"] = f"{config_path}/config.json" | |
if os.path.exists(f"{models_path}/feature_and_index.pkl"): | |
models_info[speaker]["cluster"] = f"{models_path}/feature_and_index.pkl" | |
elif os.path.exists(f"{models_path}/kmeans_10000.pt"): | |
models_info[speaker]["cluster"] = f"{models_path}/kmeans_10000.pt" | |
else: | |
models_info[speaker]["cluster"] = "" | |
speakers = list(models_info.keys()) | |
def load(speaker): | |
global sid | |
global model | |
sid = speaker | |
model = Svc(models_info[speaker]["model"], models_info[speaker]["config"], cluster_model_path=models_info[speaker]["cluster"]) | |
return "加载成功" | |
load(speakers[0]) | |
def vc_fn(input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale): | |
global sid | |
if input_audio is None: | |
return "You need to upload an audio", None | |
sampling_rate, audio = input_audio | |
# print(audio.shape,sampling_rate) | |
duration = audio.shape[0] / sampling_rate | |
# if duration > 90: | |
# return "请上传小于90s的音频,需要转换长音频请本地进行转换", None | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
if sampling_rate != 16000: | |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
print(audio.shape) | |
out_wav_path = "temp.wav" | |
soundfile.write(out_wav_path, audio, 16000, format="wav") | |
print( cluster_ratio, auto_f0, noise_scale) | |
_audio = model.slice_inference(out_wav_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale) | |
return "Success", (44100, _audio) | |
app = gr.Blocks() | |
with app: | |
with gr.Tabs(): | |
with gr.TabItem("Model"): | |
speaker = gr.Dropdown(label="讲话人", choices=speakers, value=speakers[0]) | |
model_submit = gr.Button("加载模型", variant="primary") | |
model_output1 = gr.Textbox(label="Output Message") | |
model_submit.click(load, [speaker], [model_output1]) | |
with gr.TabItem("Basic"): | |
# sid = gr.Dropdown(label="音色", choices=speakers, value=speakers[0]) | |
vc_input3 = gr.Audio(label="上传音频") | |
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0) | |
cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0) | |
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False) | |
slice_db = gr.Number(label="切片阈值", value=-40) | |
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4) | |
vc_submit = gr.Button("转换", variant="primary") | |
vc_output1 = gr.Textbox(label="Output Message") | |
vc_output2 = gr.Audio(label="Output Audio") | |
vc_submit.click(vc_fn, [vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2]) | |
app.launch() | |