Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image, ImageDraw
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
#
|
8 |
-
TESSERACT_PATH = "/usr/bin/tesseract"
|
9 |
-
pytesseract.pytesseract.tesseract_cmd = TESSERACT_PATH
|
10 |
-
|
11 |
-
def check_tesseract():
|
12 |
-
"""Check if Tesseract is installed and print its version."""
|
13 |
-
try:
|
14 |
-
tesseract_version = subprocess.check_output([TESSERACT_PATH, "--version"]).decode("utf-8").split("\n")[0]
|
15 |
-
print(f"Tesseract Version: {tesseract_version}")
|
16 |
-
return True
|
17 |
-
except Exception as e:
|
18 |
-
print(f"Tesseract not found: {e}")
|
19 |
-
return False
|
20 |
-
|
21 |
-
# Load YOLO model (ensure best.pt exists in the working directory)
|
22 |
YOLO_MODEL_PATH = "best.pt"
|
23 |
model = YOLO(YOLO_MODEL_PATH, task='detect').to("cpu")
|
24 |
|
@@ -34,10 +127,10 @@ def merge_boxes_into_lines(boxes, y_threshold=10):
|
|
34 |
for i in range(1, len(boxes)):
|
35 |
x1, y1, x2, y2 = boxes[i]
|
36 |
|
37 |
-
if abs(y1 - current_line[1]) < y_threshold:
|
38 |
-
current_line[0] = min(current_line[0], x1)
|
39 |
-
current_line[2] = max(current_line[2], x2)
|
40 |
-
current_line[3] = max(current_line[3], y2)
|
41 |
else:
|
42 |
merged_lines.append(current_line)
|
43 |
current_line = list(boxes[i])
|
@@ -45,8 +138,8 @@ def merge_boxes_into_lines(boxes, y_threshold=10):
|
|
45 |
merged_lines.append(current_line)
|
46 |
return merged_lines
|
47 |
|
48 |
-
def
|
49 |
-
"""Detects text lines
|
50 |
image = Image.fromarray(image)
|
51 |
original_image = image.copy()
|
52 |
|
@@ -57,49 +150,34 @@ def detect_and_ocr(image):
|
|
57 |
merged_boxes = merge_boxes_into_lines(detected_boxes)
|
58 |
|
59 |
draw = ImageDraw.Draw(original_image)
|
60 |
-
extracted_text_lines = []
|
61 |
|
62 |
for idx, (x1, y1, x2, y2) in enumerate(merged_boxes):
|
63 |
draw.rectangle([x1, y1, x2, y2], outline="blue", width=2)
|
64 |
draw.text((x1, y1 - 10), f"Line {idx}", fill="blue")
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
if check_tesseract(): # If Tesseract is installed, run OCR
|
69 |
-
try:
|
70 |
-
ocr_text = pytesseract.image_to_string(cropped_line, lang="khm".strip())
|
71 |
-
if ocr_text:
|
72 |
-
extracted_text_lines.append(ocr_text)
|
73 |
-
except Exception as e:
|
74 |
-
print(f"OCR failed for line {idx}: {e}")
|
75 |
-
|
76 |
-
full_text = "\n".join(extracted_text_lines) if extracted_text_lines else "⚠️ OCR not available. Showing detected lines only."
|
77 |
-
|
78 |
-
return original_image, full_text
|
79 |
|
80 |
-
# Gradio UI
|
81 |
with gr.Blocks() as iface:
|
82 |
-
gr.Markdown("# 📜 Text Line Detection with
|
83 |
-
gr.
|
84 |
-
|
85 |
-
with gr.Row():
|
86 |
-
with gr.Column(scale=1):
|
87 |
-
gr.Markdown("### 📤 Upload Image")
|
88 |
-
image_input = gr.Image(type="numpy", label="Upload an image")
|
89 |
-
|
90 |
-
with gr.Column(scale=1):
|
91 |
-
gr.Markdown("### 🖼 Annotated Image with Bounding Boxes")
|
92 |
-
output_annotated = gr.Image(type="pil", label="Detected Text Lines")
|
93 |
-
|
94 |
-
gr.Markdown("### 📝 Extracted Text (OCR Result)")
|
95 |
-
output_text = gr.Textbox(label="Extracted Text", lines=10)
|
96 |
|
97 |
image_input.upload(
|
98 |
-
|
99 |
inputs=image_input,
|
100 |
-
outputs=
|
101 |
)
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
if __name__ == "__main__":
|
105 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from ultralytics import YOLO
|
3 |
+
# from PIL import Image, ImageDraw
|
4 |
+
# import pytesseract
|
5 |
+
# import subprocess
|
6 |
+
|
7 |
+
# # Ensure Tesseract OCR is installed and detected
|
8 |
+
# TESSERACT_PATH = "/usr/bin/tesseract"
|
9 |
+
# pytesseract.pytesseract.tesseract_cmd = TESSERACT_PATH
|
10 |
+
|
11 |
+
# def check_tesseract():
|
12 |
+
# """Check if Tesseract is installed and print its version."""
|
13 |
+
# try:
|
14 |
+
# tesseract_version = subprocess.check_output([TESSERACT_PATH, "--version"]).decode("utf-8").split("\n")[0]
|
15 |
+
# print(f"Tesseract Version: {tesseract_version}")
|
16 |
+
# return True
|
17 |
+
# except Exception as e:
|
18 |
+
# print(f"Tesseract not found: {e}")
|
19 |
+
# return False
|
20 |
+
|
21 |
+
# # Load YOLO model (ensure best.pt exists in the working directory)
|
22 |
+
# YOLO_MODEL_PATH = "best.pt"
|
23 |
+
# model = YOLO(YOLO_MODEL_PATH, task='detect').to("cpu")
|
24 |
+
|
25 |
+
# def merge_boxes_into_lines(boxes, y_threshold=10):
|
26 |
+
# """Merge bounding boxes if they belong to the same text row."""
|
27 |
+
# if len(boxes) == 0:
|
28 |
+
# return []
|
29 |
+
|
30 |
+
# boxes = sorted(boxes, key=lambda b: b[1]) # Sort by y-axis (top position)
|
31 |
+
# merged_lines = []
|
32 |
+
# current_line = list(boxes[0])
|
33 |
+
|
34 |
+
# for i in range(1, len(boxes)):
|
35 |
+
# x1, y1, x2, y2 = boxes[i]
|
36 |
+
|
37 |
+
# if abs(y1 - current_line[1]) < y_threshold: # Close enough to the previous line
|
38 |
+
# current_line[0] = min(current_line[0], x1) # Extend left boundary
|
39 |
+
# current_line[2] = max(current_line[2], x2) # Extend right boundary
|
40 |
+
# current_line[3] = max(current_line[3], y2) # Extend bottom boundary
|
41 |
+
# else:
|
42 |
+
# merged_lines.append(current_line)
|
43 |
+
# current_line = list(boxes[i])
|
44 |
+
|
45 |
+
# merged_lines.append(current_line)
|
46 |
+
# return merged_lines
|
47 |
+
|
48 |
+
# def detect_and_ocr(image):
|
49 |
+
# """Detects text lines, draws bounding boxes, and runs OCR if available."""
|
50 |
+
# image = Image.fromarray(image)
|
51 |
+
# original_image = image.copy()
|
52 |
+
|
53 |
+
# results = model.predict(image, conf=0.1, iou=0.2, device="cpu")
|
54 |
+
# detected_boxes = results[0].boxes.xyxy.tolist()
|
55 |
+
# detected_boxes = [list(map(int, box)) for box in detected_boxes]
|
56 |
+
|
57 |
+
# merged_boxes = merge_boxes_into_lines(detected_boxes)
|
58 |
+
|
59 |
+
# draw = ImageDraw.Draw(original_image)
|
60 |
+
# extracted_text_lines = []
|
61 |
+
|
62 |
+
# for idx, (x1, y1, x2, y2) in enumerate(merged_boxes):
|
63 |
+
# draw.rectangle([x1, y1, x2, y2], outline="blue", width=2)
|
64 |
+
# draw.text((x1, y1 - 10), f"Line {idx}", fill="blue")
|
65 |
+
|
66 |
+
# cropped_line = image.crop((x1, y1, x2, y2))
|
67 |
+
|
68 |
+
# if check_tesseract(): # If Tesseract is installed, run OCR
|
69 |
+
# try:
|
70 |
+
# ocr_text = pytesseract.image_to_string(cropped_line, lang="khm".strip())
|
71 |
+
# if ocr_text:
|
72 |
+
# extracted_text_lines.append(ocr_text)
|
73 |
+
# except Exception as e:
|
74 |
+
# print(f"OCR failed for line {idx}: {e}")
|
75 |
+
|
76 |
+
# full_text = "\n".join(extracted_text_lines) if extracted_text_lines else "⚠️ OCR not available. Showing detected lines only."
|
77 |
+
|
78 |
+
# return original_image, full_text
|
79 |
+
|
80 |
+
# # Gradio UI
|
81 |
+
# with gr.Blocks() as iface:
|
82 |
+
# gr.Markdown("# 📜 Text Line Detection with Khmer OCR")
|
83 |
+
# gr.Markdown("## 📷 Upload an image to detect text lines and extract Khmer text")
|
84 |
+
|
85 |
+
# with gr.Row():
|
86 |
+
# with gr.Column(scale=1):
|
87 |
+
# gr.Markdown("### 📤 Upload Image")
|
88 |
+
# image_input = gr.Image(type="numpy", label="Upload an image")
|
89 |
+
|
90 |
+
# with gr.Column(scale=1):
|
91 |
+
# gr.Markdown("### 🖼 Annotated Image with Bounding Boxes")
|
92 |
+
# output_annotated = gr.Image(type="pil", label="Detected Text Lines")
|
93 |
+
|
94 |
+
# gr.Markdown("### 📝 Extracted Text (OCR Result)")
|
95 |
+
# output_text = gr.Textbox(label="Extracted Text", lines=10)
|
96 |
+
|
97 |
+
# image_input.upload(
|
98 |
+
# detect_and_ocr,
|
99 |
+
# inputs=image_input,
|
100 |
+
# outputs=[output_annotated, output_text]
|
101 |
+
# )
|
102 |
+
|
103 |
+
# # 🚀 Ensure the app runs properly in Hugging Face Spaces
|
104 |
+
# if __name__ == "__main__":
|
105 |
+
# iface.launch(server_name="0.0.0.0", server_port=7860)
|
106 |
+
|
107 |
+
|
108 |
import gradio as gr
|
109 |
from ultralytics import YOLO
|
110 |
from PIL import Image, ImageDraw
|
111 |
+
import numpy as np
|
112 |
+
import io
|
113 |
+
|
114 |
+
# Load YOLO model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
YOLO_MODEL_PATH = "best.pt"
|
116 |
model = YOLO(YOLO_MODEL_PATH, task='detect').to("cpu")
|
117 |
|
|
|
127 |
for i in range(1, len(boxes)):
|
128 |
x1, y1, x2, y2 = boxes[i]
|
129 |
|
130 |
+
if abs(y1 - current_line[1]) < y_threshold:
|
131 |
+
current_line[0] = min(current_line[0], x1)
|
132 |
+
current_line[2] = max(current_line[2], x2)
|
133 |
+
current_line[3] = max(current_line[3], y2)
|
134 |
else:
|
135 |
merged_lines.append(current_line)
|
136 |
current_line = list(boxes[i])
|
|
|
138 |
merged_lines.append(current_line)
|
139 |
return merged_lines
|
140 |
|
141 |
+
def detect_text_lines(image):
|
142 |
+
"""Detects text lines and returns the image with bounding boxes."""
|
143 |
image = Image.fromarray(image)
|
144 |
original_image = image.copy()
|
145 |
|
|
|
150 |
merged_boxes = merge_boxes_into_lines(detected_boxes)
|
151 |
|
152 |
draw = ImageDraw.Draw(original_image)
|
|
|
153 |
|
154 |
for idx, (x1, y1, x2, y2) in enumerate(merged_boxes):
|
155 |
draw.rectangle([x1, y1, x2, y2], outline="blue", width=2)
|
156 |
draw.text((x1, y1 - 10), f"Line {idx}", fill="blue")
|
157 |
|
158 |
+
return original_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
# Gradio UI for testing
|
161 |
with gr.Blocks() as iface:
|
162 |
+
gr.Markdown("# 📜 Text Line Detection with Bounding Boxes")
|
163 |
+
image_input = gr.Image(type="numpy", label="Upload an image")
|
164 |
+
output_image = gr.Image(type="pil", label="Detected Text Lines")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
image_input.upload(
|
167 |
+
detect_text_lines,
|
168 |
inputs=image_input,
|
169 |
+
outputs=output_image
|
170 |
)
|
171 |
|
172 |
+
### **Expose API for Telegram Bot**
|
173 |
+
api_interface = gr.Interface(
|
174 |
+
fn=detect_text_lines, # API function that returns the processed image
|
175 |
+
inputs=gr.Image(type="numpy"),
|
176 |
+
outputs="image"
|
177 |
+
)
|
178 |
+
|
179 |
+
# 🚀 Launch UI and API
|
180 |
if __name__ == "__main__":
|
181 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
182 |
+
api_interface.launch(server_name="0.0.0.0", server_port=7861, share=True)
|
183 |
+
|