File size: 4,866 Bytes
3a61ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fec18
3a61ad1
 
 
 
 
 
 
 
 
 
 
 
6833f86
 
3a61ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565eb8e
3a61ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 1024

DESCRIPTION = """\
# Dicta-IL's dictalm2.0-instruct

dictalm2.0-instruct was introduced in [this Facebook post](https://www.facebook.com/groups/MDLI1/posts/2704204053076959/).

Please, check the [original model card](https://huggingface.co/dicta-il/dictalm2.0-instruct) and [their official blog post](https://dicta.org.il/dicta-lm) for more details.
You can see the other Hebrew models by Dicta-IL [here](https://huggingface.co/dicta-il)

"""

LICENSE = """
<p/>

---
A derivative work of [mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) by Mistral-AI.
The model and space are released under the Apache 2.0 license

This demo Space was created by [Doron Adler](https://linktr.ee/Norod78)
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "dicta-il/dictalm2.0-instruct"    
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
    tokenizer_id = "dicta-il/dictalm2.0-instruct"
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
    tokenizer.use_default_system_prompt = False
        

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.4,
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        pad_token_id = tokenizer.eos_token_id,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=5,
        early_stopping=False,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(rtl=True, show_copy_button=True),
    textbox=gr.Textbox(text_align = 'right', rtl = True),
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.3,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.3,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=30,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.4,
        ),
    ],
    stop_btn=None,
    examples=[
        ["ืžืชื›ื•ืŸ ืœืขื•ื’ืช ืฉื•ืงื•ืœื“:"],
        ["ื”ืฉืœื ืืช ื”ืกื™ืคื•ืจ ื”ืงืฆืจ ื”ื‘ื:\n ื”ืื™ืฉ ื”ืื—ืจื•ืŸ ื‘ืขื•ืœื ื™ืฉื‘ ืœื‘ื“ ื‘ื—ื“ืจื•, ื›ืฉืœืคืชืข ื ืฉืžืขื”"],
        ["ืžื”ื™ ืฉืคืช ื”ืชื›ื ื•ืช ืคื™ื™ืชื•ืŸ?"],
        ["ืกื›ื ื‘ืงืฆืจื” ืืช ื”ืขืœื™ืœื” ืฉืœ ืกื™ื ื“ืจืœื”"],
        ["ืฉืืœื”: ืžื”ื™ ืขื™ืจ ื”ื‘ื™ืจื” ืฉืœ ืžื“ื™ื ืช ื™ืฉืจืืœ?\nืชืฉื•ื‘ื”:"],
        ["ืฉืืœื”: ืื ื™ ืžืžืฉ ืขื™ื™ืฃ, ืžื” ื›ื“ืื™ ืœื™ ืœืขืฉื•ืช?\nืชืฉื•ื‘ื”:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()