Spaces:
Sleeping
Sleeping
File size: 4,866 Bytes
3a61ad1 30fec18 3a61ad1 6833f86 3a61ad1 565eb8e 3a61ad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 1024
DESCRIPTION = """\
# Dicta-IL's dictalm2.0-instruct
dictalm2.0-instruct was introduced in [this Facebook post](https://www.facebook.com/groups/MDLI1/posts/2704204053076959/).
Please, check the [original model card](https://huggingface.co/dicta-il/dictalm2.0-instruct) and [their official blog post](https://dicta.org.il/dicta-lm) for more details.
You can see the other Hebrew models by Dicta-IL [here](https://huggingface.co/dicta-il)
"""
LICENSE = """
<p/>
---
A derivative work of [mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) by Mistral-AI.
The model and space are released under the Apache 2.0 license
This demo Space was created by [Doron Adler](https://linktr.ee/Norod78)
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "dicta-il/dictalm2.0-instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
tokenizer_id = "dicta-il/dictalm2.0-instruct"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.4,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(rtl=True, show_copy_button=True),
textbox=gr.Textbox(text_align = 'right', rtl = True),
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.3,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.3,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=30,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.4,
),
],
stop_btn=None,
examples=[
["ืืชืืื ืืขืืืช ืฉืืงืืื:"],
["ืืฉืื ืืช ืืกืืคืืจ ืืงืฆืจ ืืื:\n ืืืืฉ ืืืืจืื ืืขืืื ืืฉื ืืื ืืืืจื, ืืฉืืคืชืข ื ืฉืืขื"],
["ืืื ืฉืคืช ืืชืื ืืช ืคืืืชืื?"],
["ืกืื ืืงืฆืจื ืืช ืืขืืืื ืฉื ืกืื ืืจืื"],
["ืฉืืื: ืืื ืขืืจ ืืืืจื ืฉื ืืืื ืช ืืฉืจืื?\nืชืฉืืื:"],
["ืฉืืื: ืื ื ืืืฉ ืขืืืฃ, ืื ืืืื ืื ืืขืฉืืช?\nืชืฉืืื:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|