import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 256 MAX_INPUT_TOKEN_LENGTH = 1024 DESCRIPTION = """\ # Dicta-IL's dictalm2.0-instruct dictalm2.0-instruct was introduced in [this Facebook post](https://www.facebook.com/groups/MDLI1/posts/2704204053076959/). Please, check the [original model card](https://huggingface.co/dicta-il/dictalm2.0-instruct) and [their official blog post](https://dicta.org.il/dicta-lm) for more details. You can see the other Hebrew models by Dicta-IL [here](https://huggingface.co/dicta-il) """ LICENSE = """

--- A derivative work of [mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) by Mistral-AI. The model and space are released under the Apache 2.0 license This demo Space was created by [Doron Adler](https://linktr.ee/Norod78) """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 馃ザ This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "dicta-il/dictalm2.0-instruct" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) tokenizer_id = "dicta-il/dictalm2.0-instruct" tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.4, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, pad_token_id = tokenizer.eos_token_id, repetition_penalty=repetition_penalty, no_repeat_ngram_size=5, early_stopping=False, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(rtl=True, show_copy_button=True), textbox=gr.Textbox(text_align = 'right', rtl = True), additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.3, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.3, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=30, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.4, ), ], stop_btn=None, examples=[ ["诪转讻讜谉 诇注讜讙转 砖讜拽讜诇讚:"], ["讛砖诇诐 讗转 讛住讬驻讜专 讛拽爪专 讛讘讗:\n 讛讗讬砖 讛讗讞专讜谉 讘注讜诇诐 讬砖讘 诇讘讚 讘讞讚专讜, 讻砖诇驻转注 谞砖诪注讛"], ["诪讛讬 砖驻转 讛转讻谞讜转 驻讬讬转讜谉?"], ["住讻诐 讘拽爪专讛 讗转 讛注诇讬诇讛 砖诇 住讬谞讚专诇讛"], ["砖讗诇讛: 诪讛讬 注讬专 讛讘讬专讛 砖诇 诪讚讬谞转 讬砖专讗诇?\n转砖讜讘讛:"], ["砖讗诇讛: 讗谞讬 诪诪砖 注讬讬祝, 诪讛 讻讚讗讬 诇讬 诇注砖讜转?\n转砖讜讘讛:"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()