Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import numpy as np
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
5 |
|
6 |
# Load ASR model & processor
|
7 |
asr_model_id = "Norphel/wav2vec2-large-mms-1b-dzo-colab"
|
@@ -17,15 +18,33 @@ asr_model.to(device)
|
|
17 |
def generate_text(audio):
|
18 |
if audio is None:
|
19 |
return "No audio received"
|
20 |
-
|
21 |
-
sr, data = audio
|
22 |
data = data.astype(np.float32)
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
logits = asr_model(input_dict.input_values.to(device)).logits
|
25 |
pred_ids = torch.argmax(logits, dim=-1)[0]
|
26 |
|
|
|
27 |
return asr_processor.decode(pred_ids)
|
28 |
|
|
|
29 |
input_audio = gr.Audio(
|
30 |
sources=["microphone"],
|
31 |
waveform_options=gr.WaveformOptions(
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
+
import librosa
|
6 |
|
7 |
# Load ASR model & processor
|
8 |
asr_model_id = "Norphel/wav2vec2-large-mms-1b-dzo-colab"
|
|
|
18 |
def generate_text(audio):
|
19 |
if audio is None:
|
20 |
return "No audio received"
|
21 |
+
|
22 |
+
sr, data = audio # Unpack the tuple
|
23 |
data = data.astype(np.float32)
|
24 |
+
|
25 |
+
# Resample to 16kHz if the sample rate is not 16kHz
|
26 |
+
target_sr = 16_000
|
27 |
+
if sr != target_sr:
|
28 |
+
data = librosa.resample(data, orig_sr=sr, target_sr=target_sr)
|
29 |
+
sr = target_sr # Update the sample rate to 16kHz
|
30 |
+
|
31 |
+
# Check if audio is too short and apply padding
|
32 |
+
min_length = 16000 # 1 second of audio at 16kHz sample rate
|
33 |
+
if len(data) < min_length:
|
34 |
+
padding_length = min_length - len(data)
|
35 |
+
data = np.pad(data, (0, padding_length), mode='constant')
|
36 |
+
|
37 |
+
# Process the audio with the processor
|
38 |
+
input_dict = asr_processor(data, sampling_rate=sr, return_tensors="pt", padding=True)
|
39 |
+
|
40 |
+
# Ensure that the input tensor is moved to the correct device (GPU or CPU)
|
41 |
logits = asr_model(input_dict.input_values.to(device)).logits
|
42 |
pred_ids = torch.argmax(logits, dim=-1)[0]
|
43 |
|
44 |
+
# Decode the prediction
|
45 |
return asr_processor.decode(pred_ids)
|
46 |
|
47 |
+
|
48 |
input_audio = gr.Audio(
|
49 |
sources=["microphone"],
|
50 |
waveform_options=gr.WaveformOptions(
|