Spaces:
Runtime error
Runtime error
Create interpretability.py
Browse files- interpretability.py +163 -0
interpretability.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from rdkit import Chem
|
2 |
+
from rdkit.Chem import Draw
|
3 |
+
from rdkit.Chem.Draw import SimilarityMaps
|
4 |
+
from IPython.display import SVG
|
5 |
+
import io
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import rdkit
|
9 |
+
|
10 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
11 |
+
from transformers_interpret import SequenceClassificationExplainer
|
12 |
+
from transformers import pipeline
|
13 |
+
|
14 |
+
model_name = "FartLabs/FART_Augmented"
|
15 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
|
18 |
+
cls_explainer = SequenceClassificationExplainer(model, tokenizer)
|
19 |
+
|
20 |
+
pipe = pipeline("text-classification", model=model_name)
|
21 |
+
|
22 |
+
def get_taste_from_smiles(smiles):
|
23 |
+
# Original output
|
24 |
+
output = pipe(smiles)
|
25 |
+
|
26 |
+
# Mapping of labels to tastes
|
27 |
+
taste_labels = ['BITTER', 'SOUR', 'SWEET', 'UMAMI', 'UNDEFINED']
|
28 |
+
|
29 |
+
# Extract label and score
|
30 |
+
label_info = output[0]
|
31 |
+
label_index = int(label_info['label'].split('_')[1]) # Get the numeric part of the label
|
32 |
+
score = label_info['score']
|
33 |
+
|
34 |
+
# Reassign label
|
35 |
+
new_label = taste_labels[label_index]
|
36 |
+
|
37 |
+
# Format the title string
|
38 |
+
title_string = f"{new_label} score: {score:.2f}"
|
39 |
+
|
40 |
+
# Output the title string
|
41 |
+
return title_string
|
42 |
+
|
43 |
+
def calculate_aspect_ratio(molecule, base_size):
|
44 |
+
"""
|
45 |
+
Calculates the canvas width and height based on the molecule's aspect ratio.
|
46 |
+
|
47 |
+
Parameters:
|
48 |
+
- molecule (Mol): RDKit molecule object.
|
49 |
+
- base_size (int): The base size of the canvas, typically 400.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
- (int, int): Calculated width and height for the canvas.
|
53 |
+
"""
|
54 |
+
conf = molecule.GetConformer()
|
55 |
+
atom_positions = [conf.GetAtomPosition(i) for i in range(molecule.GetNumAtoms())]
|
56 |
+
x_coords = [pos.x for pos in atom_positions]
|
57 |
+
y_coords = [pos.y for pos in atom_positions]
|
58 |
+
width = max(x_coords) - min(x_coords)
|
59 |
+
height = max(y_coords) - min(y_coords)
|
60 |
+
aspect_ratio = width / height if height > 0 else 1
|
61 |
+
|
62 |
+
canvas_width = max(base_size, int(base_size * aspect_ratio)) if aspect_ratio > 1 else base_size
|
63 |
+
canvas_height = max(base_size, int(base_size / aspect_ratio)) if aspect_ratio < 1 else base_size
|
64 |
+
|
65 |
+
return canvas_width, canvas_height
|
66 |
+
|
67 |
+
def visualize_gradients(smiles, bw=True, padding=0.05):
|
68 |
+
"""
|
69 |
+
Visualizes atom-wise gradients or importance scores for a given molecule
|
70 |
+
based on the SMILES representation as a similarity map.
|
71 |
+
|
72 |
+
Parameters:
|
73 |
+
- smiles (str): The SMILES string of the molecule to visualize.
|
74 |
+
- bw (bool): If True, renders the molecule in black and white (default is False).
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
- None: Displays the generated similarity map in the notebook.
|
78 |
+
"""
|
79 |
+
|
80 |
+
print(get_taste_from_smiles(smiles))
|
81 |
+
|
82 |
+
# Convert SMILES string to RDKit molecule object
|
83 |
+
molecule = Chem.MolFromSmiles(smiles)
|
84 |
+
Chem.rdDepictor.Compute2DCoords(molecule)
|
85 |
+
|
86 |
+
# Set up canvas size based on aspect ratio
|
87 |
+
base_size = 400
|
88 |
+
width, height = calculate_aspect_ratio(molecule, base_size)
|
89 |
+
d = Draw.MolDraw2DCairo(width, height)
|
90 |
+
#Draw.SetACS1996Mode(d.drawOptions(),Draw.MeanBondLength(molecule))
|
91 |
+
d.drawOptions().padding = padding
|
92 |
+
|
93 |
+
# Optionally set black and white palette
|
94 |
+
if bw:
|
95 |
+
d.drawOptions().useBWAtomPalette()
|
96 |
+
|
97 |
+
# Get token importance scores and map to atoms
|
98 |
+
token_importance = cls_explainer(smiles)
|
99 |
+
atom_importance = [c[1] for c in token_importance if c[0].isalpha()]
|
100 |
+
num_atoms = molecule.GetNumAtoms()
|
101 |
+
atom_importance = atom_importance[:num_atoms]
|
102 |
+
|
103 |
+
# Generate and display a similarity map based on atom importance scores
|
104 |
+
SimilarityMaps.GetSimilarityMapFromWeights(molecule, atom_importance, draw2d=d)
|
105 |
+
|
106 |
+
# Convert drawing to image and display
|
107 |
+
d.FinishDrawing()
|
108 |
+
png_data = d.GetDrawingText()
|
109 |
+
img = Image(data=png_data)
|
110 |
+
return img
|
111 |
+
|
112 |
+
def save_high_quality_png(smiles, title, bw=True, padding=0.05):
|
113 |
+
"""
|
114 |
+
Generates a high-quality PNG of atom-wise gradients or importance scores for a molecule.
|
115 |
+
|
116 |
+
Parameters:
|
117 |
+
- smiles (str): The SMILES string of the molecule to visualize.
|
118 |
+
- token_importance (list): List of importance scores for each atom.
|
119 |
+
- bw (bool): If True, renders the molecule in black and white.
|
120 |
+
- padding (float): Padding for molecule drawing.
|
121 |
+
- output_file (str): Path to save the high-quality PNG file.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
- None
|
125 |
+
"""
|
126 |
+
|
127 |
+
# Convert SMILES string to RDKit molecule object
|
128 |
+
molecule = Chem.MolFromSmiles(smiles)
|
129 |
+
Chem.rdDepictor.Compute2DCoords(molecule)
|
130 |
+
|
131 |
+
# Get token importance scores and map to atoms
|
132 |
+
token_importance = cls_explainer(smiles)
|
133 |
+
atom_importance = [c[1] for c in token_importance if c[0].isalpha()]
|
134 |
+
num_atoms = molecule.GetNumAtoms()
|
135 |
+
atom_importance = atom_importance[:num_atoms]
|
136 |
+
|
137 |
+
# Set a large canvas size for high resolution
|
138 |
+
d = Draw.MolDraw2DCairo(1500, 1500)
|
139 |
+
|
140 |
+
dopts = d.drawOptions()
|
141 |
+
dopts.padding = padding
|
142 |
+
dopts.maxFontSize = 2000
|
143 |
+
dopts.bondLineWidth = 5
|
144 |
+
|
145 |
+
# Optionally set black and white palette
|
146 |
+
if bw:
|
147 |
+
d.drawOptions().useBWAtomPalette()
|
148 |
+
|
149 |
+
# Generate and display a similarity map based on atom importance scores
|
150 |
+
SimilarityMaps.GetSimilarityMapFromWeights(molecule, atom_importance, draw2d=d)
|
151 |
+
|
152 |
+
# Draw molecule with color highlights
|
153 |
+
d.FinishDrawing()
|
154 |
+
|
155 |
+
# Save to PNG file with high quality
|
156 |
+
with open(f"{title}.png", "wb") as png_file:
|
157 |
+
png_file.write(d.GetDrawingText())
|
158 |
+
|
159 |
+
print(f"High-quality PNG file saved as {title}.png")
|
160 |
+
d.FinishDrawing()
|
161 |
+
png_data = d.GetDrawingText()
|
162 |
+
img = Image(data=png_data)
|
163 |
+
return img
|