Spaces:
Runtime error
Runtime error
Commit
·
e9cd936
1
Parent(s):
8e98aef
Update app.py
Browse files
app.py
CHANGED
@@ -2,62 +2,42 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
|
3 |
|
4 |
|
5 |
-
title = "Code Explainer"
|
6 |
-
description = "This is a space to convert Python code into english text explaining what it does using [codeparrot-small-code-to-text](https://huggingface.co/codeparrot/codeparrot-small-code-to-text),\
|
7 |
-
a code generation model for Python finetuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text) a dataset of Python code followed by a docstring explaining it, the data was originally extracted from Jupyter notebooks."
|
8 |
-
|
9 |
-
EXAMPLE_1 = "def sort_function(arr):\n n = len(arr)\n \n # Traverse through all array elements\n for i in range(n):\n \n # Last i elements are already in place\n for j in range(0, n-i-1):\n \n # traverse the array from 0 to n-i-1\n # Swap if the element found is greater\n # than the next element\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]"
|
10 |
-
EXAMPLE_2 = "from sklearn import model_selection\nX_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.2)"
|
11 |
-
EXAMPLE_3 = "def load_text(file)\n with open(filename, 'r') as f:\n text = f.read()\n return text"
|
12 |
-
example = [
|
13 |
-
[EXAMPLE_1, 32, 0.6, 42],
|
14 |
-
[EXAMPLE_2, 16, 0.6, 42],
|
15 |
-
[EXAMPLE_3, 11, 0.2, 42],
|
16 |
-
]
|
17 |
-
|
18 |
-
# change model to the finetuned one
|
19 |
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-code-to-text")
|
20 |
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-code-to-text")
|
|
|
|
|
21 |
|
22 |
def make_doctring(gen_prompt):
|
23 |
return gen_prompt + f"\n\n\"\"\"\nExplanation:"
|
24 |
|
25 |
-
|
|
|
26 |
set_seed(seed)
|
27 |
-
|
28 |
-
|
29 |
-
generated_text
|
30 |
-
|
31 |
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
iface = gr.Interface(
|
34 |
-
fn=code_generation,
|
35 |
inputs=[
|
36 |
-
gr.Code(
|
37 |
-
gr.inputs.Slider(
|
38 |
-
|
39 |
-
|
40 |
-
step=1,
|
41 |
-
default=8,
|
42 |
-
label="Number of tokens to generate",
|
43 |
-
),
|
44 |
-
gr.inputs.Slider(
|
45 |
-
minimum=0,
|
46 |
-
maximum=2.5,
|
47 |
-
step=0.1,
|
48 |
-
default=0.6,
|
49 |
-
label="Temperature",
|
50 |
-
),
|
51 |
-
gr.inputs.Slider(
|
52 |
-
minimum=0,
|
53 |
-
maximum=1000,
|
54 |
-
step=1,
|
55 |
-
default=42,
|
56 |
-
label="Random seed to use for the generation"
|
57 |
-
)
|
58 |
],
|
59 |
-
outputs=gr.Code(label="
|
60 |
-
examples=
|
61 |
layout="horizontal",
|
62 |
theme="peach",
|
63 |
description=description,
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-code-to-text")
|
6 |
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-code-to-text")
|
7 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, num_return_sequences=1, device=0)
|
8 |
+
|
9 |
|
10 |
def make_doctring(gen_prompt):
|
11 |
return gen_prompt + f"\n\n\"\"\"\nExplanation:"
|
12 |
|
13 |
+
|
14 |
+
def code_generation(gen_prompts, max_tokens=8, temperature=0.6, seed=42):
|
15 |
set_seed(seed)
|
16 |
+
prompts = [make_doctring(p) for p in gen_prompts]
|
17 |
+
generated_text = pipe(prompts, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_tokens)[0]
|
18 |
+
return generated_text["generated_text"]
|
19 |
+
|
20 |
|
21 |
+
title = "Code Explainer"
|
22 |
+
description = "This is a space to convert Python code into english text explaining what it does using [codeparrot-small-code-to-text](https://huggingface.co/codeparrot/codeparrot-small-code-to-text),\
|
23 |
+
a code generation model for Python finetuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text) a dataset of Python code followed by a docstring explaining it, the data was originally extracted from Jupyter notebooks."
|
24 |
|
25 |
+
EXAMPLES = [
|
26 |
+
["def sort_function(arr):\n n = len(arr)\n \n # Traverse through all array elements\n for i in range(n):\n \n # Last i elements are already in place\n for j in range(0, n-i-1):\n \n # traverse the array from 0 to n-i-1\n # Swap if the element found is greater\n # than the next element\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]"],
|
27 |
+
["from sklearn import model_selection\nX_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.2)"],
|
28 |
+
["def load_text(filename):\n with open(filename, 'r') as f:\n text = f.read()\n return text"]
|
29 |
+
]
|
30 |
+
|
31 |
iface = gr.Interface(
|
32 |
+
fn=code_generation,
|
33 |
inputs=[
|
34 |
+
gr.inputs.Code(language="python", label="Python code snippet", lines=10),
|
35 |
+
gr.inputs.Slider(minimum=8, maximum=256, step=1, default=8, label="Number of tokens to generate"),
|
36 |
+
gr.inputs.Slider(minimum=0, maximum=2.5, step=0.1, default=0.6, label="Temperature"),
|
37 |
+
gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=42, label="Random seed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
],
|
39 |
+
outputs=gr.outputs.Code(language="text", label="Generated explanation", lines=10),
|
40 |
+
examples=EXAMPLES,
|
41 |
layout="horizontal",
|
42 |
theme="peach",
|
43 |
description=description,
|