Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
|
5 |
+
from datetime import datetime
|
6 |
+
import pandas as pd
|
7 |
+
import tempfile
|
8 |
+
from nltk.corpus import wordnet
|
9 |
+
import nltk
|
10 |
+
import base64
|
11 |
+
import spacy
|
12 |
+
from spacy.cli import download
|
13 |
+
from streamlit_option_menu import option_menu
|
14 |
+
import torch
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
# Download necessary NLTK and spaCy data
|
17 |
+
nltk.download('wordnet')
|
18 |
+
nltk.download('omw-1.4')
|
19 |
+
# download("en_core_web_sm")
|
20 |
+
|
21 |
+
# Load the models
|
22 |
+
nlp = spacy.load("en_core_web_sm")
|
23 |
+
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-115k-12"
|
24 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
25 |
+
feature_extractor = ViTImageProcessor.from_pretrained(model_name)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
|
28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
29 |
+
# update the model config
|
30 |
+
model.config.eos_token_id = tokenizer.eos_token_id
|
31 |
+
model.config.decoder_start_token_id = tokenizer.bos_token_id
|
32 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
33 |
+
image_captioner = pipeline('image-to-text', model=model_name)#, device=0)
|
34 |
+
|
35 |
+
model_sum_name = "google-t5/t5-base"
|
36 |
+
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
|
37 |
+
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
|
38 |
+
summarize_pipe = pipeline("summarization", model=model_sum_name)
|
39 |
+
|
40 |
+
if 'captured_images' not in st.session_state:
|
41 |
+
st.session_state.captured_images = []
|
42 |
+
|
43 |
+
def generate_caption(image):
|
44 |
+
# pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
45 |
+
# pixel_values = pixel_values.to(device)
|
46 |
+
# output_ids = model.generate(pixel_values)
|
47 |
+
# caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
48 |
+
caption = image_captioner(image)
|
49 |
+
return caption
|
50 |
+
|
51 |
+
def get_synonyms(word):
|
52 |
+
synonyms = set()
|
53 |
+
for syn in wordnet.synsets(word):
|
54 |
+
for lemma in syn.lemmas():
|
55 |
+
synonyms.add(lemma.name())
|
56 |
+
return synonyms
|
57 |
+
|
58 |
+
def preprocess_query(query):
|
59 |
+
doc = nlp(query)
|
60 |
+
tokens = set()
|
61 |
+
for token in doc:
|
62 |
+
tokens.add(token.text)
|
63 |
+
tokens.add(token.lemma_)
|
64 |
+
tokens.update(get_synonyms(token.text))
|
65 |
+
return tokens
|
66 |
+
|
67 |
+
def search_captions(query, captions):
|
68 |
+
query_tokens = preprocess_query(query)
|
69 |
+
|
70 |
+
results = []
|
71 |
+
for img_str, caption, capture_time in captions:
|
72 |
+
caption_tokens = preprocess_query(caption)
|
73 |
+
if query_tokens & caption_tokens:
|
74 |
+
results.append((img_str, caption, capture_time))
|
75 |
+
|
76 |
+
return results
|
77 |
+
|
78 |
+
def add_image_to_state(image, caption, capture_time):
|
79 |
+
img_str = base64.b64encode(cv2.imencode('.jpg', image)[1]).decode()
|
80 |
+
if len(st.session_state.captured_images) < 20: # Limit to 20 images
|
81 |
+
st.session_state.captured_images.append((img_str, caption, capture_time))
|
82 |
+
|
83 |
+
def page_image_captioning():
|
84 |
+
st.title("Image Captioning")
|
85 |
+
# Your image captioning code here
|
86 |
+
|
87 |
+
def page_video_captioning():
|
88 |
+
st.title("Video Captioning")
|
89 |
+
# Your video captioning code here
|
90 |
+
|
91 |
+
def page_webcam_capture():
|
92 |
+
st.title("Live Captioning with Webcam")
|
93 |
+
run = st.checkbox('Run')
|
94 |
+
stop = st.button('Stop')
|
95 |
+
FRAME_WINDOW = st.image([])
|
96 |
+
|
97 |
+
if 'camera' not in st.session_state:
|
98 |
+
st.session_state.camera = cv2.VideoCapture(0)
|
99 |
+
|
100 |
+
if run:
|
101 |
+
while run:
|
102 |
+
ret, frame = st.session_state.camera.read()
|
103 |
+
if not ret:
|
104 |
+
st.write("Failed to capture image.")
|
105 |
+
break
|
106 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
107 |
+
FRAME_WINDOW.image(frame)
|
108 |
+
pil_image = Image.fromarray(frame)
|
109 |
+
caption = generate_caption(pil_image)
|
110 |
+
capture_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
111 |
+
add_image_to_state(frame, caption, capture_time)
|
112 |
+
st.write(f"Caption: {caption}")
|
113 |
+
if cv2.waitKey(500) & 0xFF == ord('q'):
|
114 |
+
break
|
115 |
+
|
116 |
+
if stop and 'camera' in st.session_state:
|
117 |
+
st.session_state.camera.release()
|
118 |
+
del st.session_state.camera
|
119 |
+
st.write("Camera stopped.")
|
120 |
+
|
121 |
+
# Display the collected data
|
122 |
+
if st.session_state.captured_images:
|
123 |
+
df = pd.DataFrame(st.session_state.captured_images, columns=['Image', 'Caption', 'Capture Time'])
|
124 |
+
st.table(df[['Capture Time', 'Caption']])
|
125 |
+
else:
|
126 |
+
st.write("No images captured.")
|
127 |
+
|
128 |
+
st.sidebar.title("Search Captions")
|
129 |
+
query = st.sidebar.text_input("Enter a word to search in captions:")
|
130 |
+
if st.sidebar.button("Search"):
|
131 |
+
results = search_captions(query, st.session_state.captured_images)
|
132 |
+
if results:
|
133 |
+
st.subheader("Search Results:")
|
134 |
+
cols = st.columns(4)
|
135 |
+
for idx, (img_str, caption, capture_time) in enumerate(results):
|
136 |
+
col = cols[idx % 4]
|
137 |
+
with col:
|
138 |
+
img_data = base64.b64decode(img_str)
|
139 |
+
img = Image.open(tempfile.NamedTemporaryFile(delete=False, suffix='.jpg', mode='wb').write(img_data))
|
140 |
+
st.image(img, caption=f"{caption}\n\n*{capture_time}*", width=150)
|
141 |
+
else:
|
142 |
+
st.write("No matching captions found.")
|
143 |
+
|
144 |
+
if st.sidebar.button("Generate Report"):
|
145 |
+
if 'camera' in st.session_state:
|
146 |
+
st.session_state.camera.release()
|
147 |
+
del st.session_state.camera
|
148 |
+
|
149 |
+
if st.session_state.captured_images:
|
150 |
+
# Display captured images in a 4-column grid
|
151 |
+
st.subheader("Captured Images and Captions:")
|
152 |
+
cols = st.columns(4)
|
153 |
+
for idx, (img_str, caption, capture_time) in enumerate(st.session_state.captured_images):
|
154 |
+
col = cols[idx % 4]
|
155 |
+
with col:
|
156 |
+
img_data = base64.b64decode(img_str)
|
157 |
+
img = Image.open(tempfile.NamedTemporaryFile(delete=False, suffix='.jpg', mode='wb').write(img_data))
|
158 |
+
st.image(img, caption=f"{caption}\n\n*{capture_time}*", width=150)
|
159 |
+
|
160 |
+
# Save captions to Excel and provide a download button
|
161 |
+
df = pd.DataFrame(st.session_state.captured_images, columns=['Image', 'Caption', 'Capture Time'])
|
162 |
+
df['Image'] = df['Image'].apply(lambda x: f'<img src="data:image/jpeg;base64,{x}"/>')
|
163 |
+
excel_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
|
164 |
+
df.to_excel(excel_file.name, index=False)
|
165 |
+
st.sidebar.download_button(label="Download Captions as Excel",
|
166 |
+
data=open(excel_file.name, 'rb').read(),
|
167 |
+
file_name="camera_captions.xlsx",
|
168 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|
169 |
+
|
170 |
+
# Summarize captions in groups of 10
|
171 |
+
summaries = []
|
172 |
+
for i in range(0, len(st.session_state.captured_images), 10):
|
173 |
+
batch_captions = " ".join([st.session_state.captured_images[j][1] for j in range(i, min(i+10, len(st.session_state.captured_images)))] )
|
174 |
+
summary = summarize_pipe(batch_captions)[0]['summary_text']
|
175 |
+
summaries.append((st.session_state.captured_images[i][2], summary)) # Use the capture time of the first image in the batch
|
176 |
+
|
177 |
+
# Save summaries to Excel and provide a download button
|
178 |
+
df_summary = pd.DataFrame(summaries, columns=['Capture Time', 'Summary'])
|
179 |
+
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
|
180 |
+
df_summary.to_excel(summary_file.name, index=False)
|
181 |
+
st.sidebar.download_button(label="Download Summary Report",
|
182 |
+
data=open(summary_file.name, 'rb').read(),
|
183 |
+
file_name="camera_summary_report.xlsx",
|
184 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|
185 |
+
|
186 |
+
def main():
|
187 |
+
st.session_state.active_page = st.session_state.get("active_page", "Image Captioning")
|
188 |
+
|
189 |
+
# Sidebar for navigation
|
190 |
+
with st.sidebar:
|
191 |
+
selected = option_menu(
|
192 |
+
menu_title="Main Menu",
|
193 |
+
options=["Image Captioning", "Video Captioning", "Webcam Captioning"],
|
194 |
+
icons=["image", "Caret-right-square", "camera"],
|
195 |
+
menu_icon="cast",
|
196 |
+
default_index=0,
|
197 |
+
)
|
198 |
+
|
199 |
+
if selected != st.session_state.active_page:
|
200 |
+
handle_page_switch(selected)
|
201 |
+
|
202 |
+
if selected == "Image Captioning":
|
203 |
+
page_image_captioning()
|
204 |
+
elif selected == "Video Captioning":
|
205 |
+
page_video_captioning()
|
206 |
+
elif selected == "Webcam Captioning":
|
207 |
+
page_webcam_capture()
|
208 |
+
|
209 |
+
def handle_page_switch(selected_page):
|
210 |
+
if st.session_state.active_page == "Webcam Captioning" and "camera" in st.session_state:
|
211 |
+
st.session_state.camera.release()
|
212 |
+
del st.session_state.camera
|
213 |
+
|
214 |
+
st.session_state.active_page = selected_page
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
main()
|