File size: 7,629 Bytes
1047dcc bfb8082 1047dcc bfb8082 1047dcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import streamlit as st
import os
import cv2
import tempfile
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, pipeline
import torch
import pandas as pd
from nltk.corpus import wordnet
import nltk
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
nltk.download('wordnet')
nltk.download('omw-1.4')
# Load the pre-trained model for image captioning
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
model.config.pad_token_id
feature_extractor = ViTImageProcessor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_sum_name = "google-t5/t5-base"
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
# Initialize the summarization model
summarize_pipe = pipeline("summarization", model=model_sum_name)
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def search_captions(query, captions):
query_words = query.split()
query_synonyms = set(query_words)
for word in query_words:
query_synonyms.update(get_synonyms(word))
results = []
for path, caption in captions.items():
if any(word in caption.split() for word in query_synonyms):
results.append((path, caption))
return results
def convert_frame_to_pil(frame):
return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
def process_video(video_path, frame_interval):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
st.error("Error: Could not open video file.")
return [], pd.DataFrame()
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
frames = []
count = 0
frame_id = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if count % frame_interval == 0:
frames.append((frame_id, frame))
frame_id += 1
count += 1
if count > video_length - 1:
break
cap.release()
captions_data = []
for i, (frame_id, frame) in enumerate(frames):
pil_image = convert_frame_to_pil(frame)
caption = generate_caption(pil_image)
captions_data.append({'Frame_ID': frame_id + 1, 'Caption': caption})
captions_df = pd.DataFrame(captions_data)
return frames, captions_df
def image_captioning_page():
st.title("Image Gallery with Captioning and Search")
# Sidebar for search functionality
with st.sidebar:
query = st.text_input("Search images by caption:")
# Right side for folder path input and displaying images
folder_path = st.text_input("Enter the folder path containing images:")
if folder_path and os.path.isdir(folder_path):
image_files = [f for f in os.listdir(folder_path) if f.lower().endswith(('png', 'jpg', 'jpeg'))]
captions = {}
for image_file in image_files:
image_path = os.path.join(folder_path, image_file)
image = Image.open(image_path)
caption = generate_caption(image)
captions[image_path] = caption
# Display images in a 4-column grid
cols = st.columns(4)
for idx, (image_path, caption) in enumerate(captions.items()):
with cols[idx % 4]:
st.image(image_path, caption=caption)
if query:
results = search_captions(query, captions)
st.write("Search Results:")
for image_path, caption in results:
st.image(image_path, caption=caption)
# Save captions to CSV
if st.button("Save captions to excel"):
df = pd.DataFrame(list(captions.items()), columns=['Image', 'Caption'])
save_path = st.text_input("Enter the path to save the Excel file:", folder_path)
if save_path:
if not os.path.exists(save_path):
os.makedirs(save_path)
excel_file_path = os.path.join(save_path, "captions.xlsx")
df.to_excel(excel_file_path, index=False)
st.success(f"Captions saved to {excel_file_path}")
def live_camera_captioning_page():
st.title("Live Captioning with Webcam")
run = st.checkbox('Run')
FRAME_WINDOW = st.image([])
camera = cv2.VideoCapture(0)
while run:
ret, frame = camera.read()
if not ret:
st.write("Failed to capture image.")
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
FRAME_WINDOW.image(frame)
pil_image = Image.fromarray(frame)
caption = generate_caption(pil_image)
st.write("Caption: ", caption)
cv2.waitKey(500) # Capture an image every 0.5 seconds
camera.release()
def video_captioning_page():
st.title("Video Captioning")
# Sidebar for search functionality
with st.sidebar:
query = st.text_input("Search videos by caption:")
# Right side for folder path input and displaying videos
folder_path = st.text_input("Enter the folder path containing videos:")
if folder_path and os.path.isdir(folder_path):
video_files = [f for f in os.listdir(folder_path) if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]
captions = {}
for video_file in video_files:
video_path = os.path.join(folder_path, video_file)
frames, captions_df = process_video(video_path, frame_interval=20)
if frames and not captions_df.empty:
generated_captions = ' '.join(captions_df['Caption'])
summary = summarize_pipe(generated_captions)[0]['summary_text']
captions[video_path] = summary
# Display videos in a 4-column grid
cols = st.columns(4)
for idx, (video_path, summary) in enumerate(captions.items()):
with cols[idx % 4]:
st.video(video_path, caption=summary)
if query:
results = search_captions(query, captions)
st.write("Search Results:")
for video_path, summary in results:
st.video(video_path, caption=summary)
# Save captions to CSV
if st.button("Save captions to excel"):
df = pd.DataFrame(list(captions.items()), columns=['Video', 'Caption'])
save_path = st.text_input("Enter the path to save the Excel file:", folder_path)
if save_path:
if not os.path.exists(save_path):
os.makedirs(save_path)
excel_file_path = os.path.join(save_path, "captions.xlsx")
df.to_excel(excel_file_path, index=False)
st.success(f"Captions saved to {excel_file_path}")
def main():
st.sidebar.title("Navigation")
page = st.sidebar.selectbox("Select a page", ["Image Captioning", "Live Camera Captioning", "Video Captioning"])
if page == "Image Captioning":
image_captioning_page()
elif page == "Live Camera Captioning":
live_camera_captioning_page()
elif page == "Video Captioning":
video_captioning_page()
if __name__ == "__main__":
main()
|