Spaces:
Sleeping
Sleeping
File size: 6,537 Bytes
ff8c120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import streamlit as st
import os
import zipfile
import tempfile
import base64
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import pandas as pd
from nltk.corpus import wordnet
import spacy
import io
from spacy.cli import download
# Download the model if it is not already present
download("en_core_web_sm")
# Load the model
nlp = spacy.load("en_core_web_sm")
# Your existing code here
# Download NLTK WordNet data
import nltk
nltk.download('wordnet')
nltk.download('omw-1.4')
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
# Load the pre-trained model for image captioning
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def preprocess_query(query):
doc = nlp(query)
tokens = set()
for token in doc:
tokens.add(token.text)
tokens.add(token.lemma_)
tokens.update(get_synonyms(token.text))
return tokens
def search_captions(query, captions):
query_tokens = preprocess_query(query)
results = []
for path, caption in captions.items():
caption_tokens = preprocess_query(caption)
if query_tokens & caption_tokens:
results.append((path, caption))
return results
st.title("Image Gallery with Captioning and Search")
# Sidebar for search functionality
with st.sidebar:
query = st.text_input("Search images by caption:")
# Right side for folder path input and displaying images
option = st.selectbox("Select input method:", ["Folder Path", "Upload Images"])
if option == "Folder Path":
folder_path = st.text_input("Enter the folder path containing images:")
image_files = []
if folder_path and os.path.isdir(folder_path):
image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('png', 'jpg', 'jpeg'))]
else:
uploaded_files = st.file_uploader("Upload images or a zip file containing images:", type=['png', 'jpg', 'jpeg', 'zip'], accept_multiple_files=True)
image_files = []
if uploaded_files:
for uploaded_file in uploaded_files:
if uploaded_file.name.endswith('.zip'):
with zipfile.ZipFile(uploaded_file, 'r') as zip_ref:
zip_ref.extractall("uploaded_images")
for file in zip_ref.namelist():
if file.lower().endswith(('png', 'jpg', 'jpeg')):
image_files.append(os.path.join("uploaded_images", file))
else:
if uploaded_file.name.lower().endswith(('png', 'jpg', 'jpeg')):
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1])
temp_file.write(uploaded_file.read())
image_files.append(temp_file.name)
captions = {}
if st.button("Generate Captions", key='generate_captions'):
for image_file in image_files:
try:
image = Image.open(image_file)
caption = generate_caption(image)
if option == "Folder Path":
captions[os.path.join(folder_path, os.path.basename(image_file))] = caption
else:
if image_file.startswith("uploaded_images"):
captions[image_file.replace("uploaded_images/", "")] = caption
else:
captions[os.path.basename(image_file)] = caption
except Exception as e:
st.error(f"Error processing {image_file}: {e}")
# Display images in a grid
st.subheader("Images and Captions:")
cols = st.columns(4)
idx = 0
for image_path, caption in captions.items():
col = cols[idx % 4]
with col:
try:
with open(image_path, "rb") as img_file:
img_bytes = img_file.read()
encoded_image = base64.b64encode(img_bytes).decode()
st.markdown(
f"""
<div style='text-align: center;'>
<img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
<p>{caption}</p>
<p style='font-size: small; font-style: italic;'>{image_path}</p>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error displaying {image_path}: {e}")
idx += 1
if query:
results = search_captions(query, captions)
st.write("Search Results:")
cols = st.columns(4)
idx = 0
for image_path, caption in results:
col = cols[idx % 4]
with col:
try:
with open(image_path, "rb") as img_file:
img_bytes = img_file.read()
encoded_image = base64.b64encode(img_bytes).decode()
st.markdown(
f"""
<div style='text-align: center;'>
<img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
<p>{caption}</p>
<p style='font-size: small; font-style: italic;'>{image_path}</p>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error displaying search result {image_path}: {e}")
idx += 1
# Save captions to Excel and provide a download button
df = pd.DataFrame(list(captions.items()), columns=['Image', 'Caption'])
excel_file = io.BytesIO()
df.to_excel(excel_file, index=False)
excel_file.seek(0)
st.download_button(label="Download captions as Excel",
data=excel_file,
file_name="captions.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|