NourFakih commited on
Commit
fa22574
·
verified ·
1 Parent(s): 6bc3970

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -20
app.py CHANGED
@@ -11,10 +11,8 @@ import spacy
11
  import io
12
  from spacy.cli import download
13
 
14
- # Download the model if it is not already present
15
  download("en_core_web_sm")
16
-
17
- # Load the model
18
  nlp = spacy.load("en_core_web_sm")
19
 
20
  # Download NLTK WordNet data
@@ -22,40 +20,24 @@ import nltk
22
  nltk.download('wordnet')
23
  nltk.download('omw-1.4')
24
 
25
- # Load spaCy model
26
- nlp = spacy.load("en_core_web_sm")
27
-
28
  # Load the pre-trained model for image captioning
29
  model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-11"
30
  model = VisionEncoderDecoderModel.from_pretrained(model_name)
31
  feature_extractor = ViTImageProcessor.from_pretrained(model_name)
32
  tokenizer = AutoTokenizer.from_pretrained(model_name)
33
- # GPT2 only has bos/eos tokens but not decoder_start/pad tokens
34
  tokenizer.pad_token = tokenizer.eos_token
35
 
36
- # update the model config
37
  model.config.eos_token_id = tokenizer.eos_token_id
38
  model.config.decoder_start_token_id = tokenizer.bos_token_id
39
  model.config.pad_token_id = tokenizer.pad_token_id
40
 
41
- def preprocess_query(query):
42
- doc = nlp(query)
43
- tokens = set()
44
- for token in doc:
45
- tokens.add(token.text)
46
- tokens.add(token.lemma_)
47
- tokens.update(get_synonyms(token.text))
48
- st.write(f"Query tokens: {tokens}") # Debugging line
49
- return tokens
50
-
51
  def generate_caption(image):
52
  pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
53
  output_ids = model.generate(pixel_values)
54
  caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
55
- st.write(f"Generated caption: {caption}") # Debugging line
56
  return caption
57
 
58
-
59
  def get_synonyms(word):
60
  synonyms = set()
61
  for syn in wordnet.synsets(word):
@@ -63,6 +45,14 @@ def get_synonyms(word):
63
  synonyms.add(lemma.name())
64
  return synonyms
65
 
 
 
 
 
 
 
 
 
66
 
67
  def search_captions(query, captions):
68
  query_tokens = preprocess_query(query)
 
11
  import io
12
  from spacy.cli import download
13
 
14
+ # Download and load the spaCy model
15
  download("en_core_web_sm")
 
 
16
  nlp = spacy.load("en_core_web_sm")
17
 
18
  # Download NLTK WordNet data
 
20
  nltk.download('wordnet')
21
  nltk.download('omw-1.4')
22
 
 
 
 
23
  # Load the pre-trained model for image captioning
24
  model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-11"
25
  model = VisionEncoderDecoderModel.from_pretrained(model_name)
26
  feature_extractor = ViTImageProcessor.from_pretrained(model_name)
27
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
28
  tokenizer.pad_token = tokenizer.eos_token
29
 
30
+ # Update the model config
31
  model.config.eos_token_id = tokenizer.eos_token_id
32
  model.config.decoder_start_token_id = tokenizer.bos_token_id
33
  model.config.pad_token_id = tokenizer.pad_token_id
34
 
 
 
 
 
 
 
 
 
 
 
35
  def generate_caption(image):
36
  pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
37
  output_ids = model.generate(pixel_values)
38
  caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
39
  return caption
40
 
 
41
  def get_synonyms(word):
42
  synonyms = set()
43
  for syn in wordnet.synsets(word):
 
45
  synonyms.add(lemma.name())
46
  return synonyms
47
 
48
+ def preprocess_query(query):
49
+ doc = nlp(query)
50
+ tokens = set()
51
+ for token in doc:
52
+ tokens.add(token.text)
53
+ tokens.add(token.lemma_)
54
+ tokens.update(get_synonyms(token.text))
55
+ return tokens
56
 
57
  def search_captions(query, captions):
58
  query_tokens = preprocess_query(query)