File size: 5,567 Bytes
f42cfc0
 
 
 
 
ab81e75
f42cfc0
 
 
bd964c8
 
 
 
f42cfc0
bd964c8
f42cfc0
 
bd964c8
 
f42cfc0
 
 
 
ab81e75
f42cfc0
 
66c9e76
 
 
 
 
 
 
7896ee4
f42cfc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd964c8
 
 
 
 
 
 
 
 
f42cfc0
bd964c8
f42cfc0
 
 
bd964c8
 
f42cfc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0466dc9
f42cfc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7896ee4
f42cfc0
 
 
 
 
7896ee4
f42cfc0
 
 
 
 
7896ee4
3b947d3
f42cfc0
 
 
 
 
3b947d3
 
f42cfc0
7896ee4
 
f42cfc0
7896ee4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import streamlit as st
import os
import cv2
import pandas as pd
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
import nltk
import tempfile
import zipfile
from nltk.corpus import wordnet
import spacy
import io
from spacy.cli import download

# Download necessary NLP models
nltk.download('wordnet')
nltk.download('omw-1.4')
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")

# Load the pre-trained models for image captioning and summarization
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTImageProcessor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
tokenizer.pad_token = tokenizer.eos_token
# update the model config
model.config.eos_token_id = tokenizer.eos_token_id
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id


model_sum_name = "google-t5/t5-base"
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
summarize_pipe = pipeline("summarization", model=model_sum_name)

def generate_caption(image):
    pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
    output_ids = model.generate(pixel_values)
    caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return caption

def get_synonyms(word):
    synonyms = set()
    for syn in wordnet.synsets(word):
        for lemma in syn.lemmas():
            synonyms.add(lemma.name())
    return synonyms

def preprocess_query(query):
    doc = nlp(query)
    tokens = set()
    for token in doc:
        tokens.add(token.text)
        tokens.add(token.lemma_)
        tokens.update(get_synonyms(token.text))
    return tokens

def search_captions(query, captions):
    query_tokens = preprocess_query(query)
    
    results = []
    for path, caption in captions.items():
        caption_tokens = preprocess_query(caption)
        if query_tokens & caption_tokens:
            results.append((path, caption))
    
    return results

def process_video(video_path, frame_interval):
    cap = cv2.VideoCapture(video_path)
    frames = []
    captions = []
    success, frame = cap.read()
    count = 0
    while success:
        if count % frame_interval == 0:
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(frame_rgb)
            caption = generate_caption(pil_image)
            frames.append(frame)
            captions.append(caption)
        success, frame = cap.read()
        count += 1
    cap.release()
    df = pd.DataFrame({'Frame': frames, 'Caption': captions})
    return frames, df

st.title("Video Captioning Gallery")

# Sidebar for search functionality
with st.sidebar:
    query = st.text_input("Search videos by caption:")

# Options for input strategy
input_option = st.selectbox("Select input method:", ["Folder Path", "Upload Video", "Upload ZIP"])

video_files = []

if input_option == "Folder Path":
    folder_path = st.text_input("Enter the folder path containing videos:")
    if folder_path and os.path.isdir(folder_path):
        video_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]

elif input_option == "Upload Video":
    uploaded_files = st.file_uploader("Upload video files", type=["mp4", "avi", "mov", "mkv"], accept_multiple_files=True)
    if uploaded_files:
        for uploaded_file in uploaded_files:
            with tempfile.NamedTemporaryFile(delete=False) as temp_file:
                temp_file.write(uploaded_file.read())
                video_files.append(temp_file.name)

elif input_option == "Upload ZIP":
    uploaded_zip = st.file_uploader("Upload a ZIP file containing videos", type=["zip"])
    if uploaded_zip:
        with tempfile.NamedTemporaryFile(delete=False) as temp_file:
            temp_file.write(uploaded_zip.read())
            with zipfile.ZipFile(temp_file.name, 'r') as zip_ref:
                zip_ref.extractall("/tmp/videos")
                video_files = [os.path.join("/tmp/videos", f) for f in zip_ref.namelist() if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]

if video_files:
    captions = {}
    for video_file in video_files:
        frames, captions_df = process_video(video_file, frame_interval=20)
        
        if frames and not captions_df.empty:
            generated_captions = ' '.join(captions_df['Caption'])
            summary = summarize_pipe(generated_captions)[0]['summary_text']
            captions[video_file] = summary

    # Display videos in a 4-column grid
    cols = st.columns(4)
    for idx, (video_path, summary) in enumerate(captions.items()):
        with cols[idx % 4]:
            st.video(video_path)
            st.caption(summary)

    if query:
        results = search_captions(query, captions)
        st.write("Search Results:")
        for video_path, summary in results:
            st.video(video_path)
            st.caption(summary)

    # Save captions to CSV and provide a download button
    if st.button("Generate CSV"):
        df = pd.DataFrame(list(captions.items()), columns=['Video', 'Caption'])
        csv = df.to_csv(index=False)
        st.download_button(label="Download captions as CSV", data=csv, file_name="captions.csv", mime="text/csv")