Spaces:
Sleeping
Sleeping
File size: 5,567 Bytes
f42cfc0 ab81e75 f42cfc0 bd964c8 f42cfc0 bd964c8 f42cfc0 bd964c8 f42cfc0 ab81e75 f42cfc0 66c9e76 7896ee4 f42cfc0 bd964c8 f42cfc0 bd964c8 f42cfc0 bd964c8 f42cfc0 0466dc9 f42cfc0 7896ee4 f42cfc0 7896ee4 f42cfc0 7896ee4 3b947d3 f42cfc0 3b947d3 f42cfc0 7896ee4 f42cfc0 7896ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import streamlit as st
import os
import cv2
import pandas as pd
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
import nltk
import tempfile
import zipfile
from nltk.corpus import wordnet
import spacy
import io
from spacy.cli import download
# Download necessary NLP models
nltk.download('wordnet')
nltk.download('omw-1.4')
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Load the pre-trained models for image captioning and summarization
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTImageProcessor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
tokenizer.pad_token = tokenizer.eos_token
# update the model config
model.config.eos_token_id = tokenizer.eos_token_id
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model_sum_name = "google-t5/t5-base"
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
summarize_pipe = pipeline("summarization", model=model_sum_name)
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def preprocess_query(query):
doc = nlp(query)
tokens = set()
for token in doc:
tokens.add(token.text)
tokens.add(token.lemma_)
tokens.update(get_synonyms(token.text))
return tokens
def search_captions(query, captions):
query_tokens = preprocess_query(query)
results = []
for path, caption in captions.items():
caption_tokens = preprocess_query(caption)
if query_tokens & caption_tokens:
results.append((path, caption))
return results
def process_video(video_path, frame_interval):
cap = cv2.VideoCapture(video_path)
frames = []
captions = []
success, frame = cap.read()
count = 0
while success:
if count % frame_interval == 0:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
caption = generate_caption(pil_image)
frames.append(frame)
captions.append(caption)
success, frame = cap.read()
count += 1
cap.release()
df = pd.DataFrame({'Frame': frames, 'Caption': captions})
return frames, df
st.title("Video Captioning Gallery")
# Sidebar for search functionality
with st.sidebar:
query = st.text_input("Search videos by caption:")
# Options for input strategy
input_option = st.selectbox("Select input method:", ["Folder Path", "Upload Video", "Upload ZIP"])
video_files = []
if input_option == "Folder Path":
folder_path = st.text_input("Enter the folder path containing videos:")
if folder_path and os.path.isdir(folder_path):
video_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]
elif input_option == "Upload Video":
uploaded_files = st.file_uploader("Upload video files", type=["mp4", "avi", "mov", "mkv"], accept_multiple_files=True)
if uploaded_files:
for uploaded_file in uploaded_files:
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_file.read())
video_files.append(temp_file.name)
elif input_option == "Upload ZIP":
uploaded_zip = st.file_uploader("Upload a ZIP file containing videos", type=["zip"])
if uploaded_zip:
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_zip.read())
with zipfile.ZipFile(temp_file.name, 'r') as zip_ref:
zip_ref.extractall("/tmp/videos")
video_files = [os.path.join("/tmp/videos", f) for f in zip_ref.namelist() if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]
if video_files:
captions = {}
for video_file in video_files:
frames, captions_df = process_video(video_file, frame_interval=20)
if frames and not captions_df.empty:
generated_captions = ' '.join(captions_df['Caption'])
summary = summarize_pipe(generated_captions)[0]['summary_text']
captions[video_file] = summary
# Display videos in a 4-column grid
cols = st.columns(4)
for idx, (video_path, summary) in enumerate(captions.items()):
with cols[idx % 4]:
st.video(video_path)
st.caption(summary)
if query:
results = search_captions(query, captions)
st.write("Search Results:")
for video_path, summary in results:
st.video(video_path)
st.caption(summary)
# Save captions to CSV and provide a download button
if st.button("Generate CSV"):
df = pd.DataFrame(list(captions.items()), columns=['Video', 'Caption'])
csv = df.to_csv(index=False)
st.download_button(label="Download captions as CSV", data=csv, file_name="captions.csv", mime="text/csv") |