image_cap_app / app.py
NourFakih's picture
Create app.py
c34bc48 verified
raw
history blame
2.22 kB
import streamlit as st
import os
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import torch
from nltk.corpus import wordnet
import nltk
nltk.download('wordnet')
# Load the pre-trained model for image captioning
model_name = "nlpconnect/vit-gpt2-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = model.generate(pixel_values)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def get_synonyms(word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
return synonyms
def search_captions(query, captions):
query_words = query.split()
query_synonyms = set(query_words)
for word in query_words:
query_synonyms.update(get_synonyms(word))
results = []
for path, caption in captions.items():
if any(word in caption.split() for word in query_synonyms):
results.append((path, caption))
return results
def main():
st.title("Image Gallery with Captioning and Search")
folder_path = st.text_input("Enter the folder path containing images:")
if folder_path and os.path.isdir(folder_path):
image_files = [f for f in os.listdir(folder_path) if f.lower().endswith(('png', 'jpg', 'jpeg'))]
captions = {}
for image_file in image_files:
image_path = os.path.join(folder_path, image_file)
image = Image.open(image_path)
caption = generate_caption(image)
captions[image_path] = caption
st.image(image, caption=caption)
query = st.text_input("Search images by caption:")
if query:
results = search_captions(query, captions)
for image_path, caption in results:
st.image(image_path, caption=caption)
if __name__ == "__main__":
main()