Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- requirements (2).txt +10 -0
- streamlit_app.py +284 -0
requirements (2).txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
streamlit
|
5 |
+
opencv-python
|
6 |
+
opencv-python-headless
|
7 |
+
opencv-contrib-python-headless
|
8 |
+
Pillow
|
9 |
+
pandas
|
10 |
+
nltk
|
streamlit_app.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import tempfile
|
5 |
+
import zipfile
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer, pipeline
|
8 |
+
import torch
|
9 |
+
import pandas as pd
|
10 |
+
from nltk.corpus import wordnet
|
11 |
+
import nltk
|
12 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
13 |
+
from datetime import datetime
|
14 |
+
import base64
|
15 |
+
import io
|
16 |
+
|
17 |
+
nltk.download('wordnet')
|
18 |
+
nltk.download('omw-1.4')
|
19 |
+
|
20 |
+
# Load the pre-trained model for image captioning
|
21 |
+
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
|
22 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
23 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
|
26 |
+
model_sum_name = "google-t5/t5-base"
|
27 |
+
tokenizer_sum = AutoTokenizer.from_pretrained("google-t5/t5-base")
|
28 |
+
model_sum = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
|
29 |
+
# Initialize the summarization model
|
30 |
+
summarize_pipe = pipeline("summarization", model=model_sum_name)
|
31 |
+
|
32 |
+
captured_images = []
|
33 |
+
|
34 |
+
def generate_caption(image):
|
35 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
36 |
+
output_ids = model.generate(pixel_values)
|
37 |
+
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
38 |
+
return caption
|
39 |
+
|
40 |
+
def get_synonyms(word):
|
41 |
+
synonyms = set()
|
42 |
+
for syn in wordnet.synsets(word):
|
43 |
+
for lemma in syn.lemmas():
|
44 |
+
synonyms.add(lemma.name())
|
45 |
+
return synonyms
|
46 |
+
|
47 |
+
def search_captions(query, captions):
|
48 |
+
query_words = query.split()
|
49 |
+
query_synonyms = set(query_words)
|
50 |
+
for word in query_words:
|
51 |
+
query_synonyms.update(get_synonyms(word))
|
52 |
+
|
53 |
+
results = []
|
54 |
+
for path, caption in captions.items():
|
55 |
+
if any(word in caption.split() for word in query_synonyms):
|
56 |
+
results.append((path, caption))
|
57 |
+
|
58 |
+
return results
|
59 |
+
|
60 |
+
def image_captioning_page():
|
61 |
+
st.title("Image Gallery with Captioning and Search")
|
62 |
+
|
63 |
+
# Sidebar for search functionality
|
64 |
+
with st.sidebar:
|
65 |
+
query = st.text_input("Search images by caption:")
|
66 |
+
|
67 |
+
# Right side for folder path input and displaying images
|
68 |
+
option = st.selectbox("Select input method:", ["Folder Path", "Upload Images"])
|
69 |
+
|
70 |
+
if option == "Folder Path":
|
71 |
+
folder_path = st.text_input("Enter the folder path containing images:")
|
72 |
+
image_files = []
|
73 |
+
if folder_path and os.path.isdir(folder_path):
|
74 |
+
image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('png', 'jpg', 'jpeg'))]
|
75 |
+
else:
|
76 |
+
uploaded_files = st.file_uploader("Upload images or a zip file containing images:", type=['png', 'jpg', 'jpeg', 'zip'], accept_multiple_files=True)
|
77 |
+
image_files = []
|
78 |
+
if uploaded_files:
|
79 |
+
for uploaded_file in uploaded_files:
|
80 |
+
if uploaded_file.name.endswith('.zip'):
|
81 |
+
with zipfile.ZipFile(uploaded_file, 'r') as zip_ref:
|
82 |
+
zip_ref.extractall("uploaded_images")
|
83 |
+
for file in zip_ref.namelist():
|
84 |
+
if file.lower().endswith(('png', 'jpg', 'jpeg')):
|
85 |
+
image_files.append(os.path.join("uploaded_images", file))
|
86 |
+
else:
|
87 |
+
if uploaded_file.name.lower().endswith(('png', 'jpg', 'jpeg')):
|
88 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1])
|
89 |
+
temp_file.write(uploaded_file.read())
|
90 |
+
image_files.append(temp_file.name)
|
91 |
+
|
92 |
+
captions = {}
|
93 |
+
if st.button("Generate Captions"):
|
94 |
+
for image_file in image_files:
|
95 |
+
try:
|
96 |
+
image = Image.open(image_file)
|
97 |
+
caption = generate_caption(image)
|
98 |
+
if option == "Folder Path":
|
99 |
+
captions[os.path.join(folder_path, os.path.basename(image_file))] = caption
|
100 |
+
else:
|
101 |
+
if image_file.startswith("uploaded_images"):
|
102 |
+
captions[image_file.replace("uploaded_images/", "")] = caption
|
103 |
+
else:
|
104 |
+
captions[os.path.basename(image_file)] = caption
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"Error processing {image_file}: {e}")
|
107 |
+
|
108 |
+
# Display images in a 4-column grid
|
109 |
+
st.subheader("Images and Captions:")
|
110 |
+
cols = st.columns(4)
|
111 |
+
idx = 0
|
112 |
+
for image_path, caption in captions.items():
|
113 |
+
col = cols[idx % 4]
|
114 |
+
with col:
|
115 |
+
try:
|
116 |
+
with open(image_path, "rb") as img_file:
|
117 |
+
img_bytes = img_file.read()
|
118 |
+
encoded_image = base64.b64encode(img_bytes).decode()
|
119 |
+
st.markdown(
|
120 |
+
f"""
|
121 |
+
<div style='text-align: center;'>
|
122 |
+
<img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
|
123 |
+
<p>{caption}</p>
|
124 |
+
</div>
|
125 |
+
""", unsafe_allow_html=True)
|
126 |
+
except Exception as e:
|
127 |
+
st.error(f"Error displaying {image_path}: {e}")
|
128 |
+
idx += 1
|
129 |
+
|
130 |
+
if query:
|
131 |
+
results = search_captions(query, captions)
|
132 |
+
st.write("Search Results:")
|
133 |
+
for image_path, caption in results:
|
134 |
+
try:
|
135 |
+
with open(image_path, "rb") as img_file:
|
136 |
+
img_bytes = img_file.read()
|
137 |
+
st.image(img_bytes, caption=caption, width=150)
|
138 |
+
st.write(caption)
|
139 |
+
except Exception as e:
|
140 |
+
st.error(f"Error displaying search result {image_path}: {e}")
|
141 |
+
|
142 |
+
# Save captions to Excel and provide a download button
|
143 |
+
df = pd.DataFrame(list(captions.items()), columns=['Image', 'Caption'])
|
144 |
+
excel_file = io.BytesIO()
|
145 |
+
df.to_excel(excel_file, index=False)
|
146 |
+
excel_file.seek(0)
|
147 |
+
st.download_button(label="Download captions as Excel",
|
148 |
+
data=excel_file,
|
149 |
+
file_name="captions.xlsx",
|
150 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|
151 |
+
|
152 |
+
def live_camera_captioning_page():
|
153 |
+
st.title("Live Captioning with Webcam")
|
154 |
+
run = st.checkbox('Run')
|
155 |
+
FRAME_WINDOW = st.image([])
|
156 |
+
|
157 |
+
if 'camera' not in st.session_state:
|
158 |
+
st.session_state.camera = cv2.VideoCapture(0)
|
159 |
+
|
160 |
+
if run:
|
161 |
+
while run:
|
162 |
+
ret, frame = st.session_state.camera.read()
|
163 |
+
if not ret:
|
164 |
+
st.write("Failed to capture image.")
|
165 |
+
break
|
166 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
167 |
+
FRAME_WINDOW.image(frame)
|
168 |
+
pil_image = Image.fromarray(frame)
|
169 |
+
caption = generate_caption(pil_image)
|
170 |
+
capture_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
171 |
+
captured_images.append((frame, caption, capture_time))
|
172 |
+
st.write("Caption: ", caption)
|
173 |
+
cv2.waitKey(500) # Capture an image every 0.5 seconds
|
174 |
+
|
175 |
+
if not run and 'camera' in st.session_state:
|
176 |
+
st.session_state.camera.release()
|
177 |
+
del st.session_state.camera
|
178 |
+
|
179 |
+
st.sidebar.title("Search Captions")
|
180 |
+
query = st.sidebar.text_input("Enter a word to search in captions:")
|
181 |
+
if st.sidebar.button("Search"):
|
182 |
+
results = search_captions(query, captured_images)
|
183 |
+
if results:
|
184 |
+
st.subheader("Search Results:")
|
185 |
+
cols = st.columns(4)
|
186 |
+
for idx, (image, caption, capture_time) in enumerate(results):
|
187 |
+
col = cols[idx % 4]
|
188 |
+
with col:
|
189 |
+
st.image(image, caption=f"{caption}\n\n*{capture_time}*", width=150)
|
190 |
+
else:
|
191 |
+
st.write("No matching captions found.")
|
192 |
+
|
193 |
+
if st.button("Generate Report"):
|
194 |
+
if captured_images:
|
195 |
+
# Display captured images in a 4-column grid
|
196 |
+
st.subheader("Captured Images and Captions:")
|
197 |
+
cols = st.columns(4)
|
198 |
+
for idx, (image, caption, capture_time) in enumerate(captured_images):
|
199 |
+
col = cols[idx % 4]
|
200 |
+
with col:
|
201 |
+
st.image(image, caption=f"{caption}\n\n*{capture_time}*", width=150)
|
202 |
+
|
203 |
+
# Save captions to Excel and provide a download button
|
204 |
+
df = pd.DataFrame(captured_images, columns=['Image', 'Caption', 'Capture Time'])
|
205 |
+
excel_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
|
206 |
+
df.to_excel(excel_file.name, index=False)
|
207 |
+
st.download_button(label="Download Captions as Excel",
|
208 |
+
data=open(excel_file.name, 'rb').read(),
|
209 |
+
file_name="camera_captions.xlsx",
|
210 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|
211 |
+
|
212 |
+
# Summarize captions in groups of 10
|
213 |
+
summaries = []
|
214 |
+
for i in range(0, len(captured_images), 10):
|
215 |
+
batch_captions = " ".join([captured_images[j][1] for j in range(i, min(i+10, len(captured_images)))])
|
216 |
+
summary = summarize_pipe(batch_captions)[0]['summary_text']
|
217 |
+
summaries.append((captured_images[i][2], summary)) # Use the capture time of the first image in the batch
|
218 |
+
|
219 |
+
# Save summaries to Excel and provide a download button
|
220 |
+
df_summary = pd.DataFrame(summaries, columns=['Capture Time', 'Summary'])
|
221 |
+
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
|
222 |
+
df_summary.to_excel(summary_file.name, index=False)
|
223 |
+
st.download_button(label="Download Summary Report",
|
224 |
+
data=open(summary_file.name, 'rb').read(),
|
225 |
+
file_name="camera_summary_report.xlsx",
|
226 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
|
227 |
+
|
228 |
+
def video_captioning_page():
|
229 |
+
st.title("Video Captioning")
|
230 |
+
|
231 |
+
# Sidebar for search functionality
|
232 |
+
with st.sidebar:
|
233 |
+
query = st.text_input("Search videos by caption:")
|
234 |
+
|
235 |
+
# Right side for folder path input and displaying videos
|
236 |
+
folder_path = st.text_input("Enter the folder path containing videos:")
|
237 |
+
|
238 |
+
if folder_path and os.path.isdir(folder_path):
|
239 |
+
video_files = [f for f in os.listdir(folder_path) if f.lower().endswith(('mp4', 'avi', 'mov', 'mkv'))]
|
240 |
+
captions = {}
|
241 |
+
|
242 |
+
for video_file in video_files:
|
243 |
+
video_path = os.path.join(folder_path, video_file)
|
244 |
+
frames, captions_df = process_video(video_path, frame_interval=20)
|
245 |
+
|
246 |
+
if frames and not captions_df.empty:
|
247 |
+
generated_captions = ' '.join(captions_df['Caption'])
|
248 |
+
summary = summarize_pipe(generated_captions)[0]['summary_text']
|
249 |
+
captions[video_path] = summary
|
250 |
+
|
251 |
+
# Display videos in a 4-column grid
|
252 |
+
cols = st.columns(4)
|
253 |
+
for idx, (video_path, summary) in enumerate(captions.items()):
|
254 |
+
with cols[idx % 4]:
|
255 |
+
st.video(video_path, caption=summary)
|
256 |
+
|
257 |
+
if query:
|
258 |
+
results = search_captions(query, captions)
|
259 |
+
st.write("Search Results:")
|
260 |
+
for video_path, summary in results:
|
261 |
+
st.video(video_path, caption=summary)
|
262 |
+
|
263 |
+
# Save captions to CSV and provide a download button
|
264 |
+
if st.button("Generate CSV"):
|
265 |
+
df = pd.DataFrame(list(captions.items()), columns=['Video', 'Caption'])
|
266 |
+
csv = df.to_csv(index=False)
|
267 |
+
st.download_button(label="Download captions as CSV",
|
268 |
+
data=csv,
|
269 |
+
file_name="captions.csv",
|
270 |
+
mime="text/csv")
|
271 |
+
|
272 |
+
def main():
|
273 |
+
st.sidebar.title("Navigation")
|
274 |
+
page = st.sidebar.selectbox("Select a page", ["Image Captioning", "Live Camera Captioning", "Video Captioning"])
|
275 |
+
|
276 |
+
if page == "Image Captioning":
|
277 |
+
image_captioning_page()
|
278 |
+
elif page == "Live Camera Captioning":
|
279 |
+
live_camera_captioning_page()
|
280 |
+
elif page == "Video Captioning":
|
281 |
+
video_captioning_page()
|
282 |
+
|
283 |
+
if __name__ == "__main__":
|
284 |
+
main()
|