Spaces:
Runtime error
Runtime error
import os | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.messages import HumanMessage, SystemMessage | |
from langchain_core.messages import AIMessage | |
from langchain_community.chat_message_histories import ChatMessageHistory | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain_core.runnables.history import RunnableWithMessageHistory | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
import gradio as gr | |
# Set your API keys from environment variables | |
langchain_key = os.getenv("LANGCHAIN_API_KEY") | |
HF_key = os.getenv("HUGGINGFACEHUB_TOKEN") | |
LANGCHAIN_TRACING_V2=True | |
LANGCHAIN_ENDPOINT="https://api.smith.langchain.com" | |
LANGCHAIN_PROJECT="LLM_CHATBOT" | |
os.environ["LANGCHAIN_TRACING_V2"] = str(LANGCHAIN_TRACING_V2) | |
os.environ["LANGCHAIN_API_KEY"] = langchain_key | |
os.environ["HUGGINGFACEHUB_TOKEN"] = HF_key | |
os.environ["LANGCHAIN_ENDPOINT"] = LANGCHAIN_ENDPOINT | |
os.environ["LANGCHAIN_PROJECT"] = LANGCHAIN_PROJECT | |
# Initialize the Chat Model | |
llm = HuggingFaceEndpoint( | |
repo_id="microsoft/Phi-3-vision-128k-instruct", | |
task="text-generation", | |
max_new_tokens=150, | |
do_sample=False, | |
token =HF_key | |
) | |
# Create a Chat Prompt Template | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", "You are a helpful assistant. Answer all questions to the best of your ability."), | |
MessagesPlaceholder(variable_name="messages"), | |
] | |
) | |
# Set up the chain | |
chain = prompt | llm | |
# Set up message history | |
store = {} | |
def get_session_history(session_id: str) -> BaseChatMessageHistory: | |
if session_id not in store: | |
store[session_id] = ChatMessageHistory() | |
return store[session_id] | |
with_message_history = RunnableWithMessageHistory(chain, get_session_history) | |
# Gradio chat function | |
def chat(session_id, user_input): | |
config = {"configurable": {"session_id": session_id}} | |
human_message = HumanMessage(content=user_input) | |
response = with_message_history.invoke({"messages": [human_message]}, config=config) | |
return response | |
# Gradio interface | |
iface = gr.Interface( | |
fn=chat, | |
inputs=[gr.Textbox(lines=1, placeholder="Enter Session ID"), gr.Textbox(lines=7, placeholder="Enter your message")], | |
outputs="text", | |
title="LangChain Chatbot", | |
description="A chatbot that remembers your past interactions. Enter your session ID and message." | |
) | |
# Launch the app | |
iface.launch() |